About: Taylor's theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatMathematicalTheorems, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTaylor%27s_theorem

In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a k-th order Taylor polynomial. For analytic functions the Taylor polynomials at a given point are finite order truncations of its Taylor series, which completely determines the function in some neighborhood of the point. The exact content of "Taylor's theorem" is not universally agreed upon. Indeed, there are several versions of it applicable in different situations, and some of them contain explicit estimates on the approximation error of the function by its Taylor polynomial.

AttributesValues
rdf:type
rdfs:label
  • Taylor's theorem
  • مبرهنة تايلور
  • Taylor-Formel
  • Teorema de Taylor
  • Théorème de Taylor
  • Teorema di Taylor
  • テイラーの定理
  • Stelling van Taylor
  • Wzór Taylora
  • Teorema de Taylor
  • Теорема Тейлора
  • 泰勒公式
rdfs:comment
  • En mathématiques, plus précisément en analyse, le théorème de Taylor (ou formule de Taylor), du nom du mathématicien anglais Brook Taylor qui l'établit en 1715, montre qu'une fonction plusieurs fois dérivable au voisinage d'un point peut être approchée par une fonction polynôme dont les coefficients dépendent uniquement des dérivées de la fonction en ce point. Cette fonction polynôme est parfois appelée polynôme de Taylor.
  • 在数学中,泰勒公式(英语:Taylor's Formula)是一个用函数在某点的信息描述其附近取值的公式。這個公式來自於微積分的泰勒定理(Taylor's theorem),泰勒定理描述了一個可微函數,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,這個多項式稱為泰勒多項式(Taylor polynomial)。泰勒公式还给出了餘項即这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了帶有餘項的現在形式的泰勒定理。
  • In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a k-th order Taylor polynomial. For analytic functions the Taylor polynomials at a given point are finite order truncations of its Taylor series, which completely determines the function in some neighborhood of the point. The exact content of "Taylor's theorem" is not universally agreed upon. Indeed, there are several versions of it applicable in different situations, and some of them contain explicit estimates on the approximation error of the function by its Taylor polynomial.
  • Die Taylor-Formel (auch Satz von Taylor) ist ein Resultat aus dem mathematischen Teilgebiet der Analysis. Sie ist benannt nach dem Mathematiker Brook Taylor. Man kann diese Formel verwenden, um Funktionen in der Umgebung eines Punktes durch Polynome, die sogenannten Taylorpolynome, anzunähern. Man spricht auch von der Taylor-Näherung. Die Taylor-Formel ist aufgrund ihrer relativ einfachen Anwendbarkeit und Nützlichkeit ein Hilfsmittel in vielen Ingenieur-, Sozial- und Naturwissenschaften geworden. So kann ein komplizierter analytischer Ausdruck durch ein Taylorpolynom geringen Grades (oftmals gut) angenähert werden, z. B. in der Physik oder bei der Ausgleichung geodätischer Netze: So ist die oft verwendete Kleinwinkelnäherung des Sinus eine nach dem ersten Glied abgebrochene Taylorreihe di
  • Este teorema permite aproximar una función derivable en el entorno reducido alrededor de un punto mediante un polinomio cuyos coeficientes dependen de las derivadas de la función en ese punto. Más formalmente, si es un entero y una función que es derivable veces en el intervalo cerrado [, ] y +1 veces en el intervalo abierto (, ), entonces se cumple que: () O en forma compacta () Donde denota el factorial de , y es el resto, término que depende de y es pequeño si está próximo al punto . Existen dos expresiones para que se mencionan a continuación: () donde y , pertenecen a los números reales, a los enteros y y : () Si
  • 微分積分学において、テイラーの定理(テイラーのていり、英: Taylor's theorem)は、k 回微分可能な関数の与えられた点のまわりでの近似を k 次のテイラー多項式によって与える。解析関数に対しては、与えられた点におけるテイラー多項式は、そのテイラー級数を有限項で切ったものである。テイラー級数は関数を点のある近傍において完全に決定する。「テイラーの定理」の正確な内容は1つに定まっているわけではなくいくつかのバージョンがあり、状況に応じて使い分けられる。バージョンのいくつかは関数のテイラー多項式による近似誤差の明示的な評価を含んでいる。 テイラーの定理は1712年に1つのバージョンを述べた数学者ブルック・テイラー (Brook Taylor) にちなんで名づけられている。しかし誤差の明示的な表現はかなり後になってジョゼフ=ルイ・ラグランジュ (Joseph-Louis Lagrange) によってはじめて与えられた。結果の初期のバージョンはすでに1671年にジェームス・グレゴリー (James Gregory) によって言及されている。
  • Il teorema di Taylor, in analisi matematica, è un teorema che fornisce una sequenza di approssimazioni di una funzione differenziabile attorno ad un dato punto mediante i polinomi di Taylor, i cui coefficienti dipendono solo dalle derivate della funzione nel punto. , e prolungabile con continuità agli estremi, si può applicare il teorema di Lagrange: dove . Da questa si ottiene: che è un caso particolare della formula di Taylor con il resto di Lagrange.
  • De stelling van Taylor, in 1715 geformuleerd door Brook Taylor, geeft aan hoe we een functie in de omgeving van een punt door middel van een polynoom kunnen benaderen. De coëfficiënten van de polynoom worden uit de afgeleiden van de functie in dat punt bepaald. Als een functie f voldoende vaak differentieerbaar is in een omgeving van het punt x0, kan de functiewaarde f(x) in een punt x uit die omgeving successievelijk worden benaderd door de polynomen: en zo verder: Deze laatste som heet de -de taylorpolynoom van in . Het verschil tussen en de benaderende
  • Wzór Taylora – przedstawienie funkcji (n+1)-razy różniczkowalnej za pomocą wielomianu zależnego od kolejnych jej pochodnych oraz dostatecznie małej reszty. Twierdzenia mówiące o możliwości takiego przedstawiania pewnych funkcji (nawet dość abstrakcyjnych przestrzeni) noszą zbiorczą nazwę twierdzeń Taylora od nazwiska angielskiego matematyka Brooka Taylora, który opublikował pracę na temat lokalnego przybliżania funkcji rzeczywistych w podany niżej sposób. Ta własność funkcji różniczkowalnych znana była już przed Taylorem – w 1671 odkrył ją James Gregory.
  • Em cálculo, o Teorema de Taylor, recebe seu nome do matemático britânico Brook Taylor, quem o enunciou em 1712. Este teorema permite aproximar uma função derivável na vizinhança reduzida em torno de um ponto a: E (a, d) mediante um polinômio cujos coeficientes dependem das derivadas da função nesse ponto. Em termos matemáticos: Se ≥ 0 é um inteiro e uma função que é derivável vezes no intervalo fechado [, ] e n+1 no intervalo aberto ] , [, então, deduz-se que: Onde, denota o fatorial de , e é o resto, termo que depende de e é pequeno se está próximo ao ponto . Existem duas expressões para onde e e . Se
  • Теорема Тейлора даёт приближение к функции, дифференцируемой k раз, вблизи данной точки с помощью многочлена Тейлора k-го порядка. Для аналитических функций многочлен Тейлора в данной точке является частичной суммой их ряда Тейлора, который, в свою очередь, полностью определяет функцию в некоторой окрестности точки. Точное содержание теоремы Тейлора до настоящего времени не согласовано. Конечно, существует несколько версий теоремы, применимых в различных ситуациях, и некоторые из этих версий содержат оценки ошибки, возникающей при приближении функции с помощью многочлена Тейлора.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software