About: Tarski's axioms     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatMathematicalAxioms, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTarski%27s_axioms

Tarski's axioms, due to Alfred Tarski, are an axiom set for the substantial fragment of Euclidean geometry, called "elementary," that is formulable in first-order logic with identity, and requiring no set theory (). Other modern axiomizations of Euclidean geometry are those by Hilbert and George Birkhoff.

AttributesValues
rdf:type
rdfs:label
  • Tarski's axioms
  • Axiomes de Tarski
rdfs:comment
  • Tarski's axioms, due to Alfred Tarski, are an axiom set for the substantial fragment of Euclidean geometry, called "elementary," that is formulable in first-order logic with identity, and requiring no set theory (). Other modern axiomizations of Euclidean geometry are those by Hilbert and George Birkhoff.
  • Les axiomes de Tarski, dû à Alfred Tarski est un système d'axiomes pour la géométrie euclidienne exprimé en logique du premier ordre. Les prédicats utilisés dans le langage sont ː * le point C est entre les points A et B ; * la distance de A à B est égale à la distance de C à D.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software