About: Symmetric group   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:WikicatPermutations, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSymmetric_group

In abstract algebra, the symmetric group Sn on a finite set of n symbols is the group whose elements are all the permutation operations that can be performed on n distinct symbols, and whose group operation is the composition of such permutation operations, which are defined as bijective functions from the set of symbols to itself. Since there are n! (n factorial) possible permutation operations that can be performed on a tuple composed of n symbols, it follows that the order (the number of elements) of the symmetric group Sn is n!.

AttributesValues
rdf:type
rdfs:label
  • Symmetric group
  • زمرة متماثلة
  • Symmetrische Gruppe
  • Grupo simétrico
  • Groupe symétrique
  • Gruppo simmetrico
  • 対称群
  • Symmetrische groep
  • Симметрическая группа
  • 对称群 (n次对称群)
rdfs:comment
  • في الجبر التجريدي، زمرة متماثلة (بالإنجليزية: Symmetric group) Sn معرفة على مجموعة منتهية مكونة من n عنصرا هي زمرة التبديلات كلها لهؤلاء العناصر عملية التركيب لهؤلاء التبديلات. بما أن عدد التبديلات الممكنة لعناصر مجموعة مكونة من n عنصرا هو (عاملي n) ، فإن رتبة هذه الزمرة (أي عدد عناصرها) هو . رغم أنه من الممكن تعريف الزمر المتماثلة على المجموعات غير المنهية، إلا أن هذه المقال يتطرق إلى الزمر المتماثلة المعرفة المجموعات المنهية.انظر إلى تمثيل زمرة وإلى زمرة جزئية.
  • Die symmetrische Gruppe (, oder ) ist die Gruppe, die aus allen Permutationen (Vertauschungen) einer -elementigen Menge besteht. Man nennt den Grad der Gruppe. Die Gruppenoperation ist die Komposition (Hintereinanderausführung) der Permutationen; das neutrale Element ist die identische Abbildung. Die symmetrische Gruppe ist endlich und besitzt die Ordnung . Sie ist für nichtabelsch.
  • En matemáticas, el grupo simétrico sobre un conjunto X, denotado por SX es el grupo formado por las funciones biyectivas (permutaciones) de X en sí mismo. Cuando X es un conjunto finito, los subgrupos de SX se denominan grupos de permutaciones. El teorema de Cayley afirma que todo grupo G es isomorfo a un grupo de permutaciones (ie: un subgrupo del simétrico). De especial relevancia es el grupo simétrico sobre el conjunto finito X = {1,...,n}, denotado por Sn. El grupo Sn tiene orden n! y no es abeliano para n≥3.
  • En mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même.
  • In matematica, il gruppo simmetrico di un insieme è il gruppo formato dall'insieme delle permutazioni dei suoi elementi, cioè dall'insieme delle funzioni biiettive di tale insieme in se stesso, munito dell'operazione binaria di composizione di funzioni. Tutti i gruppi simmetrici di insiemi aventi la stessa cardinalità sono isomorfi. Tra i gruppi simmetrici di un dato numero finito n di oggetti in genere si preferisce considerare quello costituito dalle permutazioni degli interi 1, 2, ..., n e denotarlo con Sn. Questa successione di gruppi è studiata molto approfonditamente e gioca un ruolo di primaria importanza per lo studio delle simmetrie. È facile provare che il gruppo Sn ha ordine n! (si veda la voce permutazione) e che non è abeliano per n > 2.
  • 対称群(たいしょうぐん、symmetric group)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、permutation)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、permutation group)と呼ばれる。置換群が空間 X の変換群として与えられているとき、X の元 x の置換は Stab(x) = {σ ∈ SX | σx = x} で与えられる SX の部分群の分だけ潰れているが、これは X のなかに x と「同じ」元が複数含まれている場合に対応しており、X の中でこれらを区別することができれば X の元の置換から対称群 SX が回復される。
  • In de groepentheorie, een onderdeel van de wiskunde is de symmetrische groep de verzameling van alle permutaties van een rij M van n plaatsen, waarin n willekeurig kan worden gekozen. Noteer deze groep met Sn of Sym(M). De symmetrische groep Sn heeft n! elementen. Alle permutatiegroepen die een rij van n plaatsen permuteren, zijn een ondergroep van Sn. De symmetriegroep van de kubus is S4.
  • Симметрической группой множества называется группа всех перестановок (то есть биекций ) относительно операции композиции. Симметрическая группа множества обычно обозначается . Если , то также обозначается через . Но если , то изоморфна , потому при конечном считают, что равно . Нейтральным элементом в симметрической группе является тождественная перестановка , определяемая как тождественное отображение: для всех .
  • 数学上,集合X上的对称群记作SX或Sym(X)。它的元素是所有X到X自身的双射组成的群。由于恒等函数是双射,双射的反函数也是双射,并且两个双射的复合仍是双射,这个集合关于函数的复合成为群,即是置换群Sym(X)。两个函数的复合一般记作f o g,在置换群的表示里简记作fg。 对称群在很多不同的数学领域中,都扮演了重要角色。包括:伽罗华理论、不变量理论、李群的表示理论和组合学等等。
  • In abstract algebra, the symmetric group Sn on a finite set of n symbols is the group whose elements are all the permutation operations that can be performed on n distinct symbols, and whose group operation is the composition of such permutation operations, which are defined as bijective functions from the set of symbols to itself. Since there are n! (n factorial) possible permutation operations that can be performed on a tuple composed of n symbols, it follows that the order (the number of elements) of the symmetric group Sn is n!.
differentFrom
rdfs:seeAlso
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software