About: Subgroup     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSubgroup

In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is usually denoted H ≤ G, read as "H is a subgroup of G". The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. If H is a subgroup of G, then G is sometimes called an overgroup of H. This article will write ab for a ∗ b, as is usual.

AttributesValues
rdfs:label
  • Subgroup
  • زمرة جزئية
  • Untergruppe
  • Subgrupo
  • Sous-groupe
  • Sottogruppo
  • 部分群
  • Ondergroep (wiskunde)
  • Podgrupa
  • Subgrupo
  • Подгруппа
  • 子群
rdfs:comment
  • In der Gruppentheorie der Mathematik ist eine Untergruppe einer Gruppe eine Teilmenge von , die bezüglich der Verknüpfung selbst wieder eine Gruppe ist. Es gibt die Kurzschreibweise , zu lesen als " ist Untergruppe von ". Die Gruppe heißt Obergruppe der Untergruppe , in Zeichen . Untergruppen sind die Unterstrukturen in der Gruppentheorie.
  • الزمرة الجزئية (بالإنجليزية: Subgroup) هي المجموعة الجزئية من عناصر الزمرة التي تحقق بديهيات الزمر الأربع، وبالتالي يجب أن تضم العنصر المحايد. للتعبير عن جزئية زمرة من أخرى، يُقال شفهيًّا " هي زمرة جزئية من "، وتُكتب رمزيًّا ، وتُكتب أحيانًا . يجب أن تكون رتبة الزمرة الجزئية من الزمرة التي رتبتها عددا قاسمًا لـ . ويُقال على الزمرة الجزئية التي لا تضم كل عناصر الزمرة أنها زمرة جزئية فعلية، ويُرمز لهذه العلاقة بـ أو .
  • Un sous-groupe est un objet mathématique décrit par la théorie des groupes. Dans cet article, (G, ∗) désigne un groupe d'élément neutre e.
  • Un sottoinsieme H di un gruppo G è un sottogruppo se è un gruppo con l'operazione definita in G. Ogni gruppo G contiene almeno due sottogruppi: il gruppo G stesso, ed il sottogruppo banale formato unicamente dall'elemento neutro di G. (Naturalmente questi coincidono se ha un solo elemento.)Un sottogruppo si dice proprio se H è un sottoinsieme proprio di G.
  • 二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 {e} は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, ∗) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。
  • Em teoria dos grupos, um subgrupo de um grupo G é um subconjunto H de G que também seja um grupo para a mesma operação. Sejam um grupo e um subconjunto não vazio de . Dizemos que é um subgrupo de se é fechado para a operação de e é um grupo.Notação:
  • Подгруппа ― подмножество группы , само являющееся группой относительно операции, определяющей . Подмножество группы является её подгруппой тогда и только тогда, когда: 1. * содержит единичный элемент из 2. * содержит произведение любых двух элементов из , 3. * содержит вместе со всяким своим элементом обратный к нему элемент . В случае конечных и, вообще, периодических групп третье условие является следствием первых двух.
  • 假設 是一個群,若 是 的一個非空子集且同時 與相同的二元運算 亦構成一個群,則 稱為 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群{e}。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。
  • In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is usually denoted H ≤ G, read as "H is a subgroup of G". The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. If H is a subgroup of G, then G is sometimes called an overgroup of H. This article will write ab for a ∗ b, as is usual.
  • En álgebra, dado un grupo G con una operación binaria *, se dice que un subconjunto no vacío H de G es un subgrupo de G si H también forma un grupo bajo la operación *. O de otro modo, H es un subgrupo de G si la restricción de * a H satisface los axiomas de grupo. Un subgrupo propio de un grupo G es un subgrupo H que es un subconjunto propio de G (es decir H ≠ G). El subgrupo trivial de cualquier grupo es el subgrupo {e} que consiste solamente en el elemento identidad.
  • In de groepentheorie verstaat men onder een ondergroep of deelgroep van een gegeven groep G met binaire operatie *, een deelverzameling van G die zelf ook een groep is onder de operatie *. Preciezer kan men zeggen dat de deelverzameling H van een groep (G,*) een ondergroep van G is als de beperking van * tot HxH een groepswerking is op H. Als de ondergroep H van een groep G gevormd wordt door een echte deelverzameling van G spreekt men van een echte ondergroep. Voor elke groep G is er de triviale ondergroep bestaande uit alleen het eenheidselement. en, analoog, de rechternevenklasse
  • Podgrupa – zbiór elementów danej grupy, który sam tworzy grupę z działaniem grupy wyjściowej; inaczej podzbiór grupy zamknięty na działanie grupowe i branie odwrotności, który zawiera jej element neutralny (zob. działanie wewnętrzne).
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3235 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software