About: Structure theorem for finitely generated modules over a principal ideal domain     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatMatrices, within Data Space : dbpedia.org associated with source document(s)

In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.

AttributesValues
rdf:type
rdfs:label
  • Théorème des facteurs invariants
  • Structure theorem for finitely generated modules over a principal ideal domain
  • Структурная теорема для конечнопорожденных модулей над областями главных идеалов
rdfs:comment
  • In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.
  • Структурная теорема для конечнопорожденных модулей над областями главных идеалов является обобщением теоремы о классификации конечнопорождённых абелевых групп. Эта теорема предоставляет общий способ понимания некоторых результатов о канонических формах матриц.
  • En mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme. Il permet alors notamment de calculer les invariants de similitude d'un endomorphisme sur un espace vectoriel. Il joue un rôle essentiel dans la résolution de systèmes d'équations différentielles linéaires à coefficients constants et dans la théorie
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • En mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme. Il permet alors notamment de calculer les invariants de similitude d'un endomorphisme sur un espace vectoriel. Il joue un rôle essentiel dans la résolution de systèmes d'équations différentielles linéaires à coefficients constants et dans la théorie des systèmes linéaires dynamiques. Le résultat du théorème des facteurs invariants est aussi connu sous le nom de forme normale de Smith. Dans le cas non commutatif (voir l'article anneau principal non commutatif) elle s'appelle la forme normale de Jacobson-Teichmüller.
  • In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.
  • Структурная теорема для конечнопорожденных модулей над областями главных идеалов является обобщением теоремы о классификации конечнопорождённых абелевых групп. Эта теорема предоставляет общий способ понимания некоторых результатов о канонических формах матриц.
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3235 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software