About: Stieltjes transformation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatContinuedFractions, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the Stieltjes transformation Sρ(z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formula Under certain conditions we can reconstitute the density function ρ starting from its Stieltjes transformation thanks to the inverse formula of Stieltjes-Perron. For example, if the density ρ is continuous throughout I, one will have inside this interval

AttributesValues
rdf:type
rdfs:label
  • Transformée de Stieltjes
  • Stieltjes transformation
  • Преобразование Стилтьеса
rdfs:comment
  • En mathématiques, la transformée de Stieltjes d'une mesure de densité ρ sur un intervalle I est une fonction de la variable complexe z, définie à l'extérieur de cet intervalle par la formule : Sous certaines conditions on peut reconstituer la densité d'origine à partir de sa transformée grâce à la formule d'inversion de Stieltjes-Perron. Par exemple, si la densité ρ est continue sur I, on aura à l'intérieur de cet intervalle :
  • In mathematics, the Stieltjes transformation Sρ(z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formula Under certain conditions we can reconstitute the density function ρ starting from its Stieltjes transformation thanks to the inverse formula of Stieltjes-Perron. For example, if the density ρ is continuous throughout I, one will have inside this interval
  • Преобразование Стилтьеса — это интегральное преобразование, которое для функции имеет вид: где интегрирование ведётся по вещественной полуоси, а меняется в комплексной плоскости, с разрезом вдоль отрицательной вещественной полуоси. Данное преобразование является преобразованием свёртки, оно возникает при итерировании преобразования Лапласа. Преобразование Стилтьеса связано также с проблемой моментов для полубесконечного промежутки и, как следствие, с некоторыми цепными дробями. Если непрерывна и ограничена на , то справедлива формула обращения:
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • En mathématiques, la transformée de Stieltjes d'une mesure de densité ρ sur un intervalle I est une fonction de la variable complexe z, définie à l'extérieur de cet intervalle par la formule : Sous certaines conditions on peut reconstituer la densité d'origine à partir de sa transformée grâce à la formule d'inversion de Stieltjes-Perron. Par exemple, si la densité ρ est continue sur I, on aura à l'intérieur de cet intervalle :
  • In mathematics, the Stieltjes transformation Sρ(z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formula Under certain conditions we can reconstitute the density function ρ starting from its Stieltjes transformation thanks to the inverse formula of Stieltjes-Perron. For example, if the density ρ is continuous throughout I, one will have inside this interval
  • Преобразование Стилтьеса — это интегральное преобразование, которое для функции имеет вид: где интегрирование ведётся по вещественной полуоси, а меняется в комплексной плоскости, с разрезом вдоль отрицательной вещественной полуоси. Данное преобразование является преобразованием свёртки, оно возникает при итерировании преобразования Лапласа. Преобразование Стилтьеса связано также с проблемой моментов для полубесконечного промежутки и, как следствие, с некоторыми цепными дробями. Если непрерывна и ограничена на , то справедлива формула обращения: Впервые данное преобразование было рассмотрено Т. И. Стилтьесом.
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software