About: Spin glass     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:School, within Data Space : dbpedia.org associated with source document(s)

A spin glass is a disordered magnet, where the magnetic spin of the component atoms (the orientation of the north and south magnetic poles in three-dimensional space) are not aligned in a regular pattern. The term "glass" comes from an analogy between the magnetic disorder in a spin glass and the positional disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solid, magnetic spins all align in the same direction; this would be analogous to a crystal.

AttributesValues
rdf:type
rdfs:label
  • Spin glass
  • Spin-Glas
  • Vidrio de espín
  • Verre de spin
  • Vetro di spin
  • スピングラス
  • Szkło spinowe
  • Vidro de spin
  • Спиновые стёкла
  • 自旋玻璃
rdfs:comment
  • Un vidrio de espín (spin glass) es un sistema magnético en el que el acoplamiento entre los momentos magnéticos de los distintos átomos es aleatorio, tanto ferromagnético como antiferromagnético y presenta un fuerte grado de frustración. Se dice que el desorden que presenta es recocido debido a que los valores se dichos acoplos aleatorios permanecen congelados durante el tiempo de observación. Para su análisis matemático se han desarrollado diversas herramientas como, p.ej., el truco de las réplicas.
  • スピングラス (Spin glass)とは、非磁性の金属、たとえば金、銀、銅や合金に電子スピンをもった物質、つまり磁性体を薄い濃度(0.1~10%程度)で不純物として混ぜて、磁性体の電子スピンが乱雑なまま固まった物質。 混ぜる磁性体の不純物は鉄やマンガンが選ばれ、磁性不純物と呼ばれる。磁性不純物はランダムに混ざるため、そのスピンは反強磁性的な相互作用により、バラバラなスピン間の各所でフラストレーションを起こし、冷えて固まればバラバラな状態でフラストレーションを持ったまま固定される。 磁性を発揮する電子スピンの向きがアモルファス金属やガラスのようにバラバラな配列のままで固定されているのでスピンガラスと呼ばれる。この時、スピンの向きに短距離秩序は存在するが、長距離秩序は存在しない。
  • Un vetro di spin è un magnete con interazioni frustrate, insieme a disordine stocastico, in cui legami ferromagnetici e antiferromagnetici sono distribuiti in modo casuale. I vetri di spin mostrano molte strutture metastabili, che portano a molte scale di tempo difficili da studiare sperimentalmente o attraverso simulazioni.
  • 自旋玻璃是磁性合金材料的一种亚稳定的状态。铁磁性状态和反铁磁性状态中,磁矩的磁矩方向(自旋)的分布是长程有序的,而自旋玻璃状态中的磁矩方向是随机冻结的,其分布呈现出长程无序性。这里的“玻璃”实际上是长程无序状态的代名词,指这种无序状态类似于一般所说的玻璃。 自旋玻璃表现出的众多亚稳定结构,使得它具有明显的磁化弛豫现象,这也使得实验和模拟自旋玻璃的难度加大。
  • A spin glass is a disordered magnet, where the magnetic spin of the component atoms (the orientation of the north and south magnetic poles in three-dimensional space) are not aligned in a regular pattern. The term "glass" comes from an analogy between the magnetic disorder in a spin glass and the positional disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solid, magnetic spins all align in the same direction; this would be analogous to a crystal.
  • Ein Spin-Glas (auch Spinglas, englisch spin glass) ist ein bezüglich seiner Spinstruktur und der Position der Spins ungeordnetes magnetisches System mit einer ungeordneten sogenannten geometrischen Frustration. Diese ist ein quantifizierbares Maß für die Unfähigkeit des Systems, einen einfachen Spinzustand niedrigster Energie zu erreichen (Grundzustand) und kann auch ohne Verwendung des Energiebegriffs mathematisch präzise gefasst werden. Spin-Gläser (aber auch gewisse konventionell-geordnete Systeme) haben extrem viele metastabile Zustände, die auf experimentell zugänglichen Zeitskalen niemals alle durchlaufen werden können. Typische Ursache der Frustration ist bei Spin-Gläsern das gleichzeitige Vorliegen von
  • Les verres de spin sont des alliages métalliques comportant un petit nombre d'impuretés magnétiques disposées au hasard dans l'alliage. À chaque impureté est associée un spin. Le couplage entre ces différents spins peut être plus ou moins intense - attractif ou répulsif - en fonction de la distance qui les sépare. Les physiciens les modélisent statistiquement par des spins d'Ising (plus ou moins un) couplés par des constantes aléatoires représentant le désordre. Ces constantes évoluent lentement à mesure que le verre de spin vieillit et que les impuretés diffusent, c'est pourquoi ces couplages sont dits gelés, ou indépendant du temps (quenched). Souvent, on considère que ces couplages suivent une distribution gaussienne.
  • Szkło spinowe – rodzaj materiału magnetycznego, wykazujący lokalne uporządkowanie spinów (momentów magnetycznych), lecz nie posiadający wypadkowego momentu magnetycznego. Ze szkłem spinowym mamy do czynienia, gdy momenty magnetyczne rozmieszczone są przypadkowo w sieci krystalicznej, a oddziaływanie spinu z pierwszym sąsiadem ma naturę ferromagnetyczną, a z drugim antyferromagnetyczną. Oddziaływanie o charakterze ferromagnetycznym między momentami magnetycznymi następuje przez poruszające się elektrony przewodnictwa. W przypadku szkieł spinowych struktura materiału i rodzaj oddziaływań prowadzi do frustracji spinów (sprzeczne oddziaływanie z najbliższymi i drugimi sąsiadami) co sprawia, że energia układu ma wiele minimów. Konsekwencją powyższego jest płynięcie układu w czasie, tzn. wolne z
  • Um vidro de spin (do inglês spin glass) é um sistema magnético no qual, no conjunto, os acoplamentos entre os momentos magnéticos dos distintos átomos é aleatório nas interações de troca de sinal variável, tanto ferromagnético como antiferromagnético e apresenta um forte grau de frustração aumentado por desordem estocástica. Esta desordem magnética é semelhante a ordenação posicional de um vidro químico convencional. Vidros de spin apresentam muitas estruturas metaestáveis levando a uma plenitude de escalas temporais, que são difíceis de explorar experimentalmente ou em simulações.
  • Спиновые стёкла — разбавленные магнитные сплавы (например, CuMn, AgMn или AuFe), то есть немагнитные материалы с включением магнитных примесей с относительной концентрацией магнитных ионов от 10−3 до 10−1. Между магнитными ионами существует дальнодействующее РККИ-обменное взаимодействие посредством электронов проводимости. Экспериментально изучались с 1960-х годов, в качестве важной работы часто цитируют Cannella, Mydosh, 1972.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • A spin glass is a disordered magnet, where the magnetic spin of the component atoms (the orientation of the north and south magnetic poles in three-dimensional space) are not aligned in a regular pattern. The term "glass" comes from an analogy between the magnetic disorder in a spin glass and the positional disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solid, magnetic spins all align in the same direction; this would be analogous to a crystal. The individual atomic bonds in a spin glass are a mixture of roughly equal numbers of ferromagnetic bonds (where neighbors have the same orientation) and antiferromagnetic bonds (where neighbors have exactly the opposite orientation: north and south poles are flipped 180 degrees). These patterns of aligned and misaligned atomic magnets create what are known as frustrated interactions - distortions in the geometry of atomic bonds compared to what would be seen in a regular, fully aligned solid. They may also create situations where more than one geometric arrangement of atoms is stable. Spin glasses and the complex internal structures that arise within them are termed "metastable" because they are "stuck" in stable configurations other than the lowest-energy configuration (which would be aligned and ferromagnetic). The mathematical complexity of these structures are difficult but fruitful to study experimentally or in simulations, with applications to artificial neural networks in computer science in addition to physics, chemistry, and materials science.
  • Un vidrio de espín (spin glass) es un sistema magnético en el que el acoplamiento entre los momentos magnéticos de los distintos átomos es aleatorio, tanto ferromagnético como antiferromagnético y presenta un fuerte grado de frustración. Se dice que el desorden que presenta es recocido debido a que los valores se dichos acoplos aleatorios permanecen congelados durante el tiempo de observación. Para su análisis matemático se han desarrollado diversas herramientas como, p.ej., el truco de las réplicas.
  • Les verres de spin sont des alliages métalliques comportant un petit nombre d'impuretés magnétiques disposées au hasard dans l'alliage. À chaque impureté est associée un spin. Le couplage entre ces différents spins peut être plus ou moins intense - attractif ou répulsif - en fonction de la distance qui les sépare. Les physiciens les modélisent statistiquement par des spins d'Ising (plus ou moins un) couplés par des constantes aléatoires représentant le désordre. Ces constantes évoluent lentement à mesure que le verre de spin vieillit et que les impuretés diffusent, c'est pourquoi ces couplages sont dits gelés, ou indépendant du temps (quenched). Souvent, on considère que ces couplages suivent une distribution gaussienne. En physique théorique, parler des verres de spin revient à parler de ces modèles (cf ci-dessous). Mais il existe de nombreuses réalisations expérimentales de ces systèmes. Les verres de spin constituent le paradigme des systèmes désordonnés, qui, avec la physique des processus hors équilibre, constituent une grande part des travaux de ce domaine dans les dernieres années. Les verres de spin sont dits frustrés : selon des chemins différents, deux spins se donnent des instructions contradictoires. Les modèles les plus connus sont ceux d'Edward Anderson où l'on ne considère que les couplages entre plus proches voisins sur réseau hypercubique, et de Sherington et Kirpatrick, où toutes les paires de spins interagissent entre elles (graphe complet), et qui est censé tenir compte des interactions à grande distance. Ces modèles se résument donc à se donner un hamiltonien, ainsi qu'une distribution de probabilité pour les couplages. Pourquoi les verres de spin sont-ils appelés verres ? Un verre est un état de la matière à mi-chemin entre le liquide et le solide et qui possède un grand nombre d'états métastables de basse énergie. Quand le verre refroidit, il est généralement bloqué, non pas dans l'état fondamental, mais dans un de ces états métastables de basse énergie. Il en va de même des verres de spins qui possèdent un paysage composé de beaucoup d'états métastables dans les basses énergies. Il met un très grand temps pour franchir les différentes barrières et rejoindre finalement l'état fondamental (vieillissement). C'est pourquoi les constantes de couplages sont considérées comme gelées relativement aux configurations de spin (variables dynamiques), et qu'il y a lieu de considérer deux échelles de temps. Les états purs de basse énergie présentent des propriétés d'ultramétricité. Leur répartition est ultramétrique. Les difficultés rencontrées pour calculer l'énergie libre des verres de spin a donné naissance à la méthode des répliques. Les applications des verres de spin sont nombreuses : depuis les problèmes d'optimisation (économie, etc.) jusqu'en biologie (modélisation des neurones, apprentissages). Les verres de spin nous donnent un exemple de phénomènes de "vieillissement" qui sont aussi caractéristiques des verres structuraux, polymériques, diélectriques, et des colloïdes. Ils présentent des effets de rajeunissement sous l’effet de l’application d’un champ magnétique assez fort, comme les verres peuvent être rajeunis par l’application d’une contrainte. Mais les verres de spin montrent aussi des effets non-triviaux de rajeunissement et mémoire en fonction de la température, effets que certaines études récentes montrent pouvoir aussi exister, quoique moins marqués, dans certains polymères et gels. Les réalisations pratiques des verres de spin consistent en des matériaux faits d’atomes magnétiques entre lesquels les interactions sont aléatoirement ferro- ou antiferro-magnétiques. La situation la plus connue est celle d’alliages inter-métalliques, obtenus par la dilution de quelques % d’atomes magnétiques dans une matrice métallique non-magnétique ; d’autres verres de spin, aux propriétés strictement équivalentes, sont obtenus par dilution de composés magnétiques isolants. Dans ces systèmes, les moments magnétiques ne peuvent satisfaire simultanément les interactions magnétiques contradictoires auxquelles ils sont soumis par leurs voisins. Cette frustration conduit à l’existence d’une multitude d’états métastables, séparés par des barrières d’énergie de toutes tailles, qui dominent le comportement magnétique des verres de spin en produisant des temps de réponse à toutes les échelles à partir du microscopique (~10-12 s), sans limite supérieure observée. Les verres de spin se présentent à nous comme perpétuellement hors d’équilibre. La dynamique lente des verres de spin montre d’intéressantes analogies avec celle des verres structuraux ou polymériques. Une procédure expérimentale standard d’étude de ces propriétés consiste à refroidir le verre de spin jusqu’en dessous de sa température de gel Tg (typiquement vers 0.5-0.9 Tg) en présence d’un faible champ magnétique H, à attendre pendant un temps tw (l’aimantation reste à très peu près constante), pour ensuite couper ce champ à t=0 et mesurer la relaxation vers zéro de l’aimantation, dite “thermo-rémanente” (TRM). Cette relaxation s’étend sur plusieurs décades de temps, et de plus dépend du temps d’attente tw : plus tw est grand, plus la relaxation est lente, le verre de spin “ durcit ”. Ce phénomène de vieillissement est exactement semblable à celui observé dans la relaxation du module élastique des polymères vitreux. Il obéit d’ailleurs aux mêmes lois d’échelles ; les courbes correspondant à 2 valeurs tw1 et tw2 sont à peu près espacées de μ.log tw1/ tw2, avec μ≤1. Ceci suggère une loi d’échelle en t/twμ ; plus exactement, on utilise λ/twμ, où λ est un temps effectif rendant compte de l’effet du vieillissement au cours de la relaxation elle-même (à temps courts λ~t). Cette variable réduite permet de superposer avec une grande précision les relaxations mesurées pour des tw variant sur de larges gammes. L’exposant μ mesuré dans les verres de spin reste toujours inférieur à 1, même dans la limite des champs très faibles. Il diminue lorsque l’amplitude du champ magnétique H (dont la coupure provoque la relaxation) augmente. Voir pour plus de détails .Le lecteur intéressé trouvera dansune présentation des effets dits de "rajeunissement et mémoire", avec un certain nombre de références utiles.
  • Ein Spin-Glas (auch Spinglas, englisch spin glass) ist ein bezüglich seiner Spinstruktur und der Position der Spins ungeordnetes magnetisches System mit einer ungeordneten sogenannten geometrischen Frustration. Diese ist ein quantifizierbares Maß für die Unfähigkeit des Systems, einen einfachen Spinzustand niedrigster Energie zu erreichen (Grundzustand) und kann auch ohne Verwendung des Energiebegriffs mathematisch präzise gefasst werden. Spin-Gläser (aber auch gewisse konventionell-geordnete Systeme) haben extrem viele metastabile Zustände, die auf experimentell zugänglichen Zeitskalen niemals alle durchlaufen werden können. Typische Ursache der Frustration ist bei Spin-Gläsern das gleichzeitige Vorliegen von a) Wechselwirkungen mit konkurrierendem Vorzeichen (also z. B. ferromagnetische Wechselwirkung zwischen den Spins 1 und 2, antiferromagnetische Wechselwirkung zwischen den Spins 2 und 3, wie z. B. in der dritten horizontalen Zeile von oben in der nebenstehenden Skizze), sowieb) Unordnung, analog zu der Unordnung in einem chemischen Glas (ansonsten haben aber Spin-Gläser mit den chemischen Gläsern nichts zu tun). Das Phänomen der „Frustration“ in dem oben angegebenen Sinn tritt z. B. auf, wenn eine ungerade Zahl von Spins antiferromagnetisch miteinander wechselwirken. Der Begriff wurde durch Ausnutzung von Querbeziehungen in modifizierter Form von dem Franzosen Gérard Toulouse aus der Hochenergiephysik übernommen (siehe Quantenchromodynamik und Wilson-Loop, nach dem amerikanischen Nobelpreisträger Kenneth Wilson).
  • スピングラス (Spin glass)とは、非磁性の金属、たとえば金、銀、銅や合金に電子スピンをもった物質、つまり磁性体を薄い濃度(0.1~10%程度)で不純物として混ぜて、磁性体の電子スピンが乱雑なまま固まった物質。 混ぜる磁性体の不純物は鉄やマンガンが選ばれ、磁性不純物と呼ばれる。磁性不純物はランダムに混ざるため、そのスピンは反強磁性的な相互作用により、バラバラなスピン間の各所でフラストレーションを起こし、冷えて固まればバラバラな状態でフラストレーションを持ったまま固定される。 磁性を発揮する電子スピンの向きがアモルファス金属やガラスのようにバラバラな配列のままで固定されているのでスピンガラスと呼ばれる。この時、スピンの向きに短距離秩序は存在するが、長距離秩序は存在しない。
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software