About: Slope     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSlope

In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. Slope is often denoted by the letter m; there is no clear answer to the question why the letter m is used for slope, but it might be from the "m for multiple" in the equation of a straight line "y = mx + c". * The direction of a line is either increasing, decreasing, horizontal or vertical. * A line is increasing if it goes up from left to right. The slope is positive, i.e. . * A line is decreasing if it goes down from left to right. The slope is negative, i.e.

AttributesValues
rdfs:label
  • Slope
  • انحدار
  • Steigung
  • Pendiente (matemáticas)
  • Pente (mathématiques)
  • Coefficiente angolare
  • Richtingscoëfficiënt
  • 傾き (数学)
  • Угловой коэффициент
  • Declive
  • 斜率
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) في الرياضيات، الميل أو الانحدار أو المعامل الموجه هو قياس لانحدار الخط المستقيم (ضمن جملة الإحداثيات الديكارتية) ويمكن حساب ميل الخط المستقيم بسهولة باستخدام مفاهيم الجبر والهندسة، أما في التحليل فيمكن تحديد ميل المماس للمنحنى في كل نقطة من نقاط المنحنى.
  • In der Mathematik, insbesondere in der Analysis, ist die Steigung (auch als Anstieg bezeichnet) ein Maß für die Steilheit einer Geraden oder einer Kurve. Das Problem, die Steigung zu ermitteln, stellt sich dabei nicht nur bei geometrischen Fragestellungen, sondern beispielsweise auch in der Physik oder in der Volkswirtschaftslehre. So entspricht etwa die Steigung in einem Zeit-Weg-Diagramm der Geschwindigkeit oder die Steigung in einem Zeit-Ladungs-Diagramm der Stromstärke.
  • En matemáticas y ciencias aplicadas se denomina pendiente a la inclinación de un elemento lineal, natural o constructivo respecto de la horizontal. En geometría analítica, puede referirse a la pendiente de la ecuación de una recta(o coeficiente angular) como caso particular de la tangente a una curva, en cuyo caso representa la derivada de la función en el punto considerado, y es un parámetro relevante, por ejemplo, en el trazado altimétrico de carreteras, vías férreas o canales.
  • 数学における平面上の直線の傾き(かたむき、英: slope)あるいは勾配(こうばい、英: gradient)は、その傾斜の具合を表す数値である。ただし、鉛直線に対する傾きは定義されない。 傾きは普通、直線上の2点間の変化の割合、すなわち x の増加量に対する y の増加量の比率として定義される。また、同値な定義として、傾き m は傾斜角を θ として と書くことができる。 曲線上の微分可能な1点に対しても、傾斜の具合を表す数値(微分係数)が、傾きの考え方により定義できる。 傾きの概念は、地理学および土木工学における斜度や勾配(たとえば道路など)に直接応用される。
  • Em matemática, o declive mede a inclinação de uma reta face ao eixo das abcissas. Coincide com a tangente do ângulo formado pela reta e por esse eixo. Dada uma reta representada por y = ax + b, diz-se que a representa o seu declive. Em geografia fala-se de nivelamento.
  • 斜率用來量度斜坡的斜度,數學上直線斜率任一處皆相等,是直線傾斜程度的量度。透過代數和幾何能計算出直線的斜率;曲線上某點的切線斜率反映此曲線的變數在此點的變化快慢程度,用微積分可計算出曲線中任一點的切線斜率,直线斜率的概念等同土木工程/地理的坡度。
  • In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. Slope is often denoted by the letter m; there is no clear answer to the question why the letter m is used for slope, but it might be from the "m for multiple" in the equation of a straight line "y = mx + c". * The direction of a line is either increasing, decreasing, horizontal or vertical. * A line is increasing if it goes up from left to right. The slope is positive, i.e. . * A line is decreasing if it goes down from left to right. The slope is negative, i.e.
  • En mathématiques, la pente d'une droite, ou son coefficient directeur, est un nombre qui permet de décrire à la fois le sens de l'inclinaison de la droite (si la droite monte quand on la parcourt de la gauche vers la droite, le nombre est positif, si la droite descend, le nombre est négatif) et la force de celle-ci (plus le nombre est grand en valeur absolue, plus la pente est forte). En géométrie cartésienne, le coefficient directeur d'une droite, non parallèle au deuxième axe de coordonnées, désigne le coefficient de l'équation de la droite, lorsque l'abscisse et la variation correspondante de .
  • In geometria analitica il coefficiente angolare (in lingua inglese slope, pendenza) di una retta non verticale nel piano cartesiano è il coefficiente che compare nella sua equazione, scritta nella forma: . Partendo dai coefficienti dell'equazione generale , con (retta non verticale), il coefficiente angolare è espresso dal rapporto . Due rette (non verticali) sono parallele esattamente quando hanno lo stesso coefficiente angolare; in particolare, il coefficiente angolare della retta passante per l'origine, , quindi . e : Per una retta verticale, di equazione ma uguali coordinate è ben definito). e e . .
  • De richtingscoëfficiënt van een rechte lijn in een vlak met een rechthoekig xy-assenstelsel is de tangens van de hoek die de rechte maakt met de positieve x-as. De richtingscoëfficiënt is een maat voor de helling van de lijn ten opzichte van de x-as. Als de lijn gegeven wordt door de vergelijking: , is het getal a de richtingscoëfficiënt. De richtingscoëfficiënt kan worden gevonden door het differentiequotiënt te nemen van twee punten op de lijn. Beschouwen we de lijn als lineaire functie, dan is de afgeleide de constante functie met vergelijking y = a.
  • Угловой коэффициент прямой — коэффициент в уравнении прямой на координатной плоскости, численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой линией. Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему. k всегда равен , то есть производной уравнения прямой по x. Угловой коэффициент не существует (иногда формально говорят «обращается в бесконечность») для прямых, параллельных оси Oy. Прямые и перпендикулярны, если , а параллельны при .
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. Slope is often denoted by the letter m; there is no clear answer to the question why the letter m is used for slope, but it might be from the "m for multiple" in the equation of a straight line "y = mx + c". * The direction of a line is either increasing, decreasing, horizontal or vertical. * A line is increasing if it goes up from left to right. The slope is positive, i.e. . * A line is decreasing if it goes down from left to right. The slope is negative, i.e. . * If a line is horizontal the slope is zero. This is a constant function. * If a line is vertical the slope is undefined (see below). * The steepness, incline, or grade of a line is measured by the absolute value of the slope. A slope with a greater absolute value indicates a steeper line Slope is calculated by finding the ratio of the "vertical change" to the "horizontal change" between (any) two distinct points on a line. Sometimes the ratio is expressed as a quotient ("rise over run"), giving the same number for every two distinct points on the same line. A line that is decreasing has a negative "rise". The line may be practical - as set by a road surveyor, or in a diagram that models a road or a roof either as a description or as a plan. The rise of a road between two points is the difference between the altitude of the road at those two points, say y1 and y2, or in other words, the rise is (y2 − y1) = Δy. For relatively short distances - where the earth's curvature may be neglected, the run is the difference in distance from a fixed point measured along a level, horizontal line, or in other words, the run is (x2 − x1) = Δx. Here the slope of the road between the two points is simply described as the ratio of the altitude change to the horizontal distance between any two points on the line. In mathematical language, the slope m of the line is The concept of slope applies directly to grades or gradients in geography and civil engineering. Through trigonometry, the grade m of a road is related to its angle of incline θ by the tangent function Thus, a 45° rising line has a slope of +1 and a 45° falling line has a slope of −1. As a generalization of this practical description, the mathematics of differential calculus defines the slope of a curve at a point as the slope of the tangent line at that point. When the curve given by a series of points in a diagram or in a list of the coordinates of points, the slope may be calculated not at a point but between any two given points. When the curve is given as a continuous function, perhaps as an algebraic formula, then the differential calculus provides rules giving a formula for the slope of the curve at any point in the middle of the curve. This generalization of the concept of slope allows very complex constructions to be planned and built that go well beyond static structures that are either horizontals or verticals, but can change in time, move in curves, and change depending on the rate of change of other factors. Thereby, the simple idea of slope becomes one of the main basis of the modern world in terms of both technology and the built environment.
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) في الرياضيات، الميل أو الانحدار أو المعامل الموجه هو قياس لانحدار الخط المستقيم (ضمن جملة الإحداثيات الديكارتية) ويمكن حساب ميل الخط المستقيم بسهولة باستخدام مفاهيم الجبر والهندسة، أما في التحليل فيمكن تحديد ميل المماس للمنحنى في كل نقطة من نقاط المنحنى.
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software