About: Simple Lie group     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatLieGroups, within Data Space : dbpedia.org associated with source document(s)

Simple Lie groups are a class of Lie groups which play a role in Lie group theory similar to that of simple groups in the theory of discrete groups. Essentially, simple Lie groups are connected Lie groups which cannot be decomposed as an extension of smaller connected Lie groups, and which are not commutative. Together with the commutative Lie group of the real numbers, In group theory, a simple Lie group is a connected locally compact non-abelian Lie group G which does not have nontrivial connected normal subgroups.

AttributesValues
rdf:type
rdfs:label
  • Simple Lie group
  • 単純リー群
  • Enkelvoudige Lie-groep
  • Простая группа Ли
  • 單李群
rdfs:comment
  • Простая группа Ли — группа Ли, не имеющая нормальных подгрупп, кроме тривиальных, состоящих из единицы группы и всей группы. Близким понятием является «полупростая группа Ли», которая не имеет абелевых инвариантных подгрупп, опять-таки, кроме тривиальных.
  • 在數學中,單李群是不含非平凡的連通正規李子群的連通李群。另一個等價的定義是:單李群是對應到單李代數的連通李群。 單李群是李群理論中的基本構件,依照其李代數的複化,可以分成三族典型群,與有限個例外李代數。前者在幾何學與數論中的應用有悠久歷史,而後者則涉及數學中的某些特殊配置與當代理論物理學。在應用上,我們通常會考慮更一般的半單李群或約化群。約化群的表示是當前數學的熱點之一。
  • Simple Lie groups are a class of Lie groups which play a role in Lie group theory similar to that of simple groups in the theory of discrete groups. Essentially, simple Lie groups are connected Lie groups which cannot be decomposed as an extension of smaller connected Lie groups, and which are not commutative. Together with the commutative Lie group of the real numbers, In group theory, a simple Lie group is a connected locally compact non-abelian Lie group G which does not have nontrivial connected normal subgroups.
  • 群論において、単純リー群 (simple Lie group) は連結非可換リー群 G であって非自明な連結正規部分群を持たないものである。 単純リー環 (simple Lie algebra) は非可換リー環であってイデアルが 0 と自身しかないものである。単純リー環の直和は半単純リー環と呼ばれる。 単純リー群の同値な定義がLie correspondenceから従う:連結リー群はリー環が単純であれば単純である。重要な技術的点は、単純リー群は離散的な正規部分群を含むかもしれず、したがって単純リー群であることは抽象群として単純であることとは異なるということである。 単純リー群は多くの古典型リー群を含む。古典型リー群は球面幾何学、射影幾何学、フェリックス・クラインのエルランゲンプログラムの意味で関連する幾何学の群論的支柱を提供する。どんなよく知られた幾何学にも対応しない例外的な可能性もいくつか存在することが単純リー群の分類の過程で現れた。これらの例外群 (exceptional group) により数学の他の分野や当時の理論物理学の多くの特別な例や configuration が説明される。
  • In de groepentheorie, een deelgebied van de wiskunde, is een enkelvoudige Lie-groep een samenhangende niet-abelse Lie-groep G, die geen niet-triviale samenhangende normale deelgroepen heeft. Een enkelvoudige Lie-algebra is een niet-abelse Lie-algebra, wiens enige idealen nul en zichzelf zijn. Een directe som van enkelvoudige Lie-algebra wordt een halfenkelvoudige Lie-algebra genoemd.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software