About: Semigroup     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAlgebraicStructures, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSemigroup

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. The binary operation of a semigroup is most often denoted multiplicatively: x·y, or simply xy, denotes the result of applying the semigroup operation to the ordered pair (x, y). Associativity is formally expressed as that (x·y)·z = x·(y·z) for all x, y and z in the semigroup.

AttributesValues
rdf:type
rdfs:label
  • Semigroup
  • نصف زمرة
  • Halbgruppe
  • Semigrupo
  • Semigruppo
  • Demi-groupe
  • 半群
  • Halfgroep
  • Półgrupa
  • Semigrupo
  • Полугруппа
  • 半群
rdfs:comment
  • In der Mathematik ist eine Halbgruppe eine algebraische Struktur bestehend aus einer Menge mit einer inneren zweistelligen Verknüpfung, die dem Assoziativgesetz genügt (also ein assoziatives Magma). Sie ist eine Verallgemeinerung einer Gruppe.
  • Un semigrupo es un sistema algebraico de la forma en la cual A es un conjunto no vacío, es una operación interna definida en A . Un semigrupo cumple las dos siguientes propiedades: Si además se cumple la propiedad conmutativa: se dice que es un semigrupo conmutativo o abeliano.
  • En mathématiques, un demi-groupe (ou semi-groupe) est l'une des structures algébriques utilisées en algèbre générale. C'est un ensemble muni d'une loi de composition interne associative. Autrement dit, c'est un magma associatif. Il est dit commutatif si sa loi est de plus commutative. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre.
  • In matematica, un semigruppo è un insieme munito di una operazione binaria associativa.In altre parole per semigruppo si intende una struttura algebricaespressa da una coppia (A,*) con A insieme e * funzione definita su tutto A × A a valori in A per la quale si ha . Equivalentemente si può definire come semigruppo ogni magma associativo.
  • 数学における半群(はんぐん、英: semigroup)は集合 S とその上の結合的二項演算とをあわせて考えた代数的構造である。言い換えれば、半群とは演算が結合的なマグマのことをいう。半群の名は、既存の群の概念に由来するものである。半群は、各元が必ずしも逆元を持たないこと(さらに、単位元すら持たないかもしれないこと)が、群と異なる。 半群の演算はほとんど乗法的に書かれる(順序対 (x, y) に対して演算を施した結果を x • y などで、あるいは単に xy で表す)。 半群についてきちんとした形での研究が行われるようになるのは20世紀の初めごろからである。半群は、「無記憶」系 ("memoryless" system) すなわち各反復時点でゼロから開始される時間依存系 (time-dependent system) の抽象代数的な定式化の基盤であるので、数学の各種分野において重要な概念である。応用数学においては、半群は線型時間不変系の基本モデルである。また偏微分方程式論では、半群は空間発展的かつ時間非依存な任意の方程式に対応している。有限半群論は1950年代以降、有限半群と有限オートマトンとの間の自然な関連性から、理論計算機科学の分野で特に重要となった。確率論では半群はマルコフ過程に関連付けられている ()。
  • Een halfgroep of semigroep is in de wiskunde, meer specifiek in de abstracte algebra, een algebraïsche structuur die bestaat uit een niet-lege verzameling H samen met een associatieve binaire operatie. Een halfgroep is in andere woorden een associatief magma. De formele studie van halfgroepen begon ongeveer honderd jaar geleden, in het begin van de twintigste eeuw. Sinds de jaren vijftig is de theorie van de eindige halfgroepen van bijzonder belang geweest in de theoretische informatica, vooral vanwege het natuurlijke verband tussen eindige halfgroepen en eindigetoestandsautomaten.
  • Półgrupa – Grupoid , którego działanie jest łączne, czyli: * , Szczególnymi przypadkami półgrup są monoid i grupa. Klasa wszystkich półgrup jest rozmaitością.
  • Um semigrupo pode ser definido de 2 maneiras completamente equivalentes 1. * é um conjunto G dotado de uma operação binária para a qual valem as seguintes propriedades: 2. 1. * fechamento: dado o elemento resultante da composição de a e b pertence a G () 3. 2. * associatividade: para todos vale 4. * é um grupóide dotado da propriedade associativa (associatividade) 1. * associatividade: para todos vale Acrescentando outros axiomas à operação binária *, temos: * Monóide - se existe elemento neutro
  • 在数学中,半群是闭合于结合性二元运算之下的集合 S 构成的代数结构。 半群的运算经常指示为乘号,也就是 或简写为 xy 来指示应用半群运算于有序对 (x, y) 的结果。 半群的正式研究开始于二十世纪早期。自从1950年代,有限半群的研究在理论计算机科学中变得特别重要,因为在有限半群和有限自动机之间有自然的联系。
  • In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. The binary operation of a semigroup is most often denoted multiplicatively: x·y, or simply xy, denotes the result of applying the semigroup operation to the ordered pair (x, y). Associativity is formally expressed as that (x·y)·z = x·(y·z) for all x, y and z in the semigroup.
  • في الرياضيات ، نصف الزمرة (بالإنجليزية: semigroup) هي بنية جبرية مؤلفة من مجموعة مغلقة بالنسبة لعملية ثنائية تجميعية. بكلام آخر تكون نصف الزمرة ماعما تجميعية . اشتق مصطلح نصف الزمرة من المصطلح الأساسي الزمرة . غالبا ما تمثل العملية في نصف الزمرة برمز الجداء أي ، أو ببساطة xy وهي تعطي نتيجة تطبيق عملية نصف الزمرة الثنائية على الزوج المرتب : (x, y). هناك خلاف فيما إذا كانت المجموعة الخالية يمكن اعتبارها نصف زمرة أو لا .
  • Полугруппа в общей алгебре — множество с заданной на нём ассоциативной бинарной операцией . Существуют разногласия по поводу того, нужно ли включать требование непустоты в определение полугруппы; отдельные авторы даже настаивают на необходимости наличия нейтрального элемента («единицы»). Однако более общепринятым является подход, согласно которому полугруппа не обязательно является непустой и не обязательно содержит нейтральный элемент. Полугруппа с нейтральным элементом называется моноидом; любую полугруппу и определив полученный моноид обычно обозначается как .
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software