About: Root system     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Aircraft, within Data Space : dbpedia.org associated with source document(s)

In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory.

AttributesValues
rdf:type
rdfs:label
  • Root system
  • نظام جذري
  • Wurzelsystem
  • Système de racines
  • Wortelsysteem
  • Układ pierwiastkowy
  • Система корней
  • 根系
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) في الرياضيات، النظام الجذري (بالإنجليزية: Root system) هو تشكيل من الأشعة في الفضاء الإقليدي، يحقق خواصا هندسية معينة. هذا المصطلح ذو أهمية خاصة نظرية زمرة لاي. * 32xبوابة رياضيات25بك هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.مشاريع شقيقة في كومنز صور وملفات عن: نظام جذري
  • In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory.
  • Wurzelsysteme dienen in der Mathematik als Hilfsmittel zur Klassifikation der endlichen Spiegelungsgruppen und der endlichdimensionalen halbeinfachen komplexen Lie-Algebren.
  • En mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie desgroupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués. Par ailleurs, le schéma de classification des systèmes de racines, par les diagrammes de Dynkin, apparaît dans des parties des mathématiques sans aucune connexion manifeste avec les groupes de Lie (telle que la théorie des singularités (en)).
  • Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам. Эта концепция является фундаментальной в теории групп Ли и алгебр Ли. Диаграммы Коксетера — Дынкина использующиеся при классификации систем корней встречается в разделах математики, не связанных явно с группами Ли, например, в теории сингулярностей.
  • Skończony zbiór wektorów przestrzeni wektorowej nad ciałem spełniający następujące warunki: 1. * nie zawiera wektora zerowego i generuje przestrzeń , 2. * dla każdego istnieje taki element , gdzie jest przestrzenią sprzężoną z , że i endomorfizm przestrzeni odwzorowuje w siebie. 3. * dla każdych
  • 在數學中,根系是歐幾里得空間中滿足某些公理的向量配置。根系在李群、李代數與代數群理論中格外重要;而根系分類的主要工具──鄧肯圖,也見諸奇异性理论等與李群並無顯著關係的學科。
  • In de groepentheorie en de meetkunde, deelgebieden van de wiskunde, is een wortelsysteem een configuratie van vectoren in een Euclidische ruimte, die voldoet aan bepaalde meetkundige eigenschappen. Het concept is fundamenteel in de theorie van de Lie-groepen en de Lie-algebra's. Aangezien Lie-groepen (en sommige analogen ervan, zoals algebraïsche groepen) en Lie-algebra's in de twintigste eeuw belangrijk zijn geworden in veel deelgebieden van de wiskunde, logenstraft het ogenschijnlijk specifieke karakter van het wortelsysteem het grote aantal gebieden, waarbinnen het "wortelsysteem"-concept wordt toegepast. Verder komt het classificatieschema voor wortelsystemen, door middel van Dynkin-diagram, in deelgebieden van de wiskunde, die geen nauwe relatie hebben met de Lie-theorie (zoals de sin
rdfs:seeAlso
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software