About: Riemann surface     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatRiemannSurfaces, within Data Space : dbpedia.org associated with source document(s)

In mathematics, particularly in complex analysis, a Riemann surface, first studied by and named after Bernhard Riemann, is a one-dimensional complex manifold. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

AttributesValues
rdf:type
rdfs:label
  • Riemann surface
  • سطح ريمان
  • Riemannsche Fläche
  • Superficie de Riemann
  • Surface de Riemann
  • Superficie di Riemann
  • リーマン面
  • Riemann-oppervlak
  • Powierzchnia Riemanna
  • Superfície de Riemann
  • Риманова поверхность
  • 黎曼曲面
rdfs:comment
  • En geometría algebraica, una superficie de Riemann es una variedad compleja de dimensión (compleja) uno. Consecuentemente, la variedad real subyacente será de dimensión 2.
  • In matematica e in particolare in analisi complessa una superficie di Riemann, dal matematico Bernhard Riemann, è una varietà complessa uno-dimensionale. In altre parole, si tratta di una superficie, modellata però localmente con aperti del piano complesso . Nonostante la superficie sia fatta localmente come un aperto di un piano, la suatopologia globale può essere abbastanza differente. Per esempio, può avere l'aspetto di una sfera, di un toro o di una superficie di genere più alto.
  • 数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンに因んで名付けられた。リーマン面は、複素平面を変形したものと考えられる。各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面の様に見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。
  • 数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。
  • In mathematics, particularly in complex analysis, a Riemann surface, first studied by and named after Bernhard Riemann, is a one-dimensional complex manifold. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.
  • في الرياضيات، وخصوصًا في التحليل العقدي، سطح ريمان (بالإنجليزية: Riemann surface)، تعني متعدد الشغب المعقد (complex manifold)أحادي البعد. وقد اكتشف برنارد ريمان تلك السطوح، ولذا سميت باسمه.من الممكن أن نعتبر سطوح ريمان "صورة مشوهة" للـمستوى العقدي، فمحليًا بجانب كل نقطة تبدو سطوح ريمان وكأنها بقع من المستوى العقدي، ولكن قد تكون الـطوبولوجيا العالمية مختلفة قليلاً عن ذلك. فعلى سبيل المثال، قد تبدو وكأنها كرة أو طارة (رياضيات) أو بضع ورقات ملصوقة ببعضها البعض.
  • Eine riemannsche Fläche ist im mathematischen Teilgebiet der Funktionentheorie (engl. complex analysis) eine eindimensionale komplexe Mannigfaltigkeit. Riemannsche Flächen sind die einfachsten geometrischen Objekte, die lokal die Struktur der komplexen Zahlen besitzen. Benannt sind sie nach dem Mathematiker Bernhard Riemann. Die Untersuchung von riemannschen Flächen fällt in das mathematische Gebiet der Funktionentheorie und hängt wesentlich von Methoden der algebraischen Topologie und algebraischen Geometrie ab. .
  • En géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann. Toute surface réelle orientable peut être munie d'une structure complexe, autrement dit être regardée comme une surface de Riemann. Cela est précisé par le théorème d'uniformisation.
  • In wiskunde, in het bijzonder in de complexe analyse, is een riemann-oppervlak, voor het eerst bestudeerd door en tevens vernoemd naar Bernhard Riemann, een één-dimensionale complexe variëteit. Riemann-oppervlakken kunnen worden gezien als "vervormde versies" van het complexe vlak: lokaal, in de buurt van een willekeurig punt zien ze eruit als aanhechtingen op het complexe vlak, maar de globale topologie kan heel anders zijn. Zo kan een riemann-oppervlak eruitzien als een bol, een torus of een paar aan elkaar geplakte vellen papier.
  • Uma superfície de Riemann é uma variedade analítica de dimensão complexa. Como toda variedade analítica, uma superfície de Riemann é orientável. É possível mostrar que o recobrimento universal de uma superfície de Riemann é o disco , a esfera de Riemann , ou o plano complexo . Um método clássico para classificar e construir superfícies de Riemann consiste em quocientar a esfera, o disco ou o plano por um grupo : x é equivalente a y se e somente se existe algum tal que .
  • Powierzchnia Riemanna – rozmaitość dwuwymiarowa, która lokalnie wygląda jak płaszczyzna zespolona; jednowymiarowa rozmaitość zespolona. Inaczej mówiąc, na powierzchnie Riemanna można patrzeć jak na rodziny otwartych podzbiorów płaszczyzny zespolonej sklejonych ze sobą poprzez funkcje holomorficzne. Powierzchniami Riemanna po raz pierwszy zajmował się niemiecki matematyk Bernhard Riemann; od niego wzięły swoją nazwę.
  • Ри́манова пове́рхность — традиционное в комплексном анализе название одномерного комплексного дифференцируемого многообразия. Такие поверхности начал систематически изучать Бернхард Риман. Примерами римановых поверхностей являются комплексная плоскость и сфера Римана. Поверхность Римана позволяет геометрически представить многозначные функции комплексного переменного таким образом, что каждой её точке соответствует одно значение многозначной функции, причём при непрерывном перемещении по поверхности непрерывно изменяется и функция. Каноническим видом поверхности Римана является представление в виде плоской лепёшки с некоторым количеством дыр.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3235 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software