About: Real number   Goto Sponge  NotDistinct  Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In mathematics, a real number is a value that represents a quantity along a line. The adjective real in this context was introduced in the 17th century by Descartes, who distinguished between real and imaginary roots of polynomials. The reals are uncountable; that is: while both the set of all natural numbers and the set of all real numbers are infinite sets, there can be no one-to-one function from the real numbers to the natural numbers: the cardinality of the set of all real numbers (denoted and strictly smaller than

AttributesValues
rdf:type
rdfs:label
  • عدد حقيقي
  • Reelle Zahl
  • Número real
  • Nombre réel
  • Numero reale
  • 実数
  • Reëel getal
  • Liczby rzeczywiste
  • Número real
  • Вещественное число
  • 实数
  • Real number
rdfs:comment
  • 数学における実数(じっすう、 仏: nombre réel、独: reelle Zahl、英: real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表す言葉として導入されたものである。
  • في الرياضيات، عدد حقيقي (بالإنجليزية: Real number) هو قيمة كمية ما تمثَّل عادة على مستقيم متصل. مجموعة الأعداد الحقيقية هي مجموعة أعداد تتكون من مجموعة الأعداد غير النسبية (R\Q) ومجموعة الأعداد الكسرية (Q). تشمل مجموعة الأعداد الكسرية مجموعة الأعداد الصحيحة (Z) و الكسور, وتشمل مجموعة الأعداد الصحيحة مجموعة الأعداد الطبيعية (N). وبذلك تكون: مجموعة الأعداد الطبيعية مجموعة جزئية من مجموعة الأعداد الصحيحة والأخيرة مجموعة جزئية من مجموعة الأعداد الكسرية والأخيرة مجموعة جزئية من مجموعة الأعداد الحقيقية. في هذه المجموعة المعادلة الآتية: لها حل.
  • Die reellen Zahlen bilden einen in der Mathematik bedeutenden Zahlenbereich. Er ist eine Erweiterung des Bereichs der rationalen Zahlen, der Brüche, womit die Maßzahlen der Messwerte für übliche physikalische Größen wie zum Beispiel Länge, Temperatur oder Masse als reelle Zahlen aufgefasst werden können. Die reellen Zahlen umfassen die rationalen Zahlen und die irrationalen Zahlen.
  • En matemáticas, el conjunto de los números reales (denotado por ℝ) incluye tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como: √5, π, el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.
  • En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels la racine carrée de 2, π et e. Article détaillé : Construction des nombres réels.
  • In matematica, i numeri reali possono essere descritti in maniera non formale come numeri ai quali è possibile attribuire uno sviluppo decimale finito o infinito, come I numeri reali possono essere positivi, negativi o nulli e comprendono, come casi particolari, i numeri interi (come ), i numeri razionali (come ) e i numeri irrazionali algebrici (come ) e trascendenti (come ed ). Un numero reale razionale presenta uno sviluppo decimale finito o periodico; ad esempio è razionale. L'insieme dei numeri reali viene generalmente indicato con la lettera R o .
  • De reële getallen zijn de getallen die op eenduidige wijze overeenkomen met punten op een rechte. Deze rechte wordt de getallenas, getallenlijn, getallenrechte of reële rechte genoemd. Zo kunnen we ons intuïtief de verzameling van de reële getallen, die wordt genoteerd als en soms het continuüm wordt genoemd, voorstellen. De verzameling bestaat uit de rationale en de irrationale getallen. Een voorbeeld van een irrationaal getal is het getal en π zijn, maar van hun decimale voorstelling kennen we uiteraard maar eindig veel decimalen. , namelijk de complexe getallen De absolute waarde , dus de functie
  • Zbiór liczb rzeczywistych – rozszerzenie zbioru liczb wymiernych (jako przestrzeni metrycznej) do przestrzeni zupełnej; równoważnie – rozszerzenie zbioru liczb wymiernych (z topologią przedziałową) do przestrzeni spójnej. Zbiór liczb rzeczywistych jest więc ciałem uporządkowanym spełniającym aksjomat ciągłości. Liczby rzeczywiste, które nie są wymierne, nazywane są liczbami niewymiernymi. Zbiór liczb rzeczywistych oznaczany jest symbolem lub .
  • Os números reais são números usados para representar uma quantidade contínua (incluindo o zero e os negativos). Pode-se pensar num número real como uma fração decimal possivelmente infinita, como 3,141592(...). Os números reais têm uma correspondência biunívoca com os pontos de uma reta. Denomina-se corpo dos números reais a coleção dos elementos pertencentes à conclusão dos racionais, formado pelo corpo de frações associado aos inteiros (números racionais) e a norma associada ao infinito.
  • In mathematics, a real number is a value that represents a quantity along a line. The adjective real in this context was introduced in the 17th century by Descartes, who distinguished between real and imaginary roots of polynomials. The reals are uncountable; that is: while both the set of all natural numbers and the set of all real numbers are infinite sets, there can be no one-to-one function from the real numbers to the natural numbers: the cardinality of the set of all real numbers (denoted and strictly smaller than
  • Веще́ственное, или действи́тельное число— математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций. Множество вещественных чисел имеет стандартное обозначение — R («полужирное R»), или , Unicode U+211D: ℝ) (англ. blackboard bold «R») от лат. realis — действительный.
  • 实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如√2、π等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為: * 任何兩條線段(的長度)的比,可以用自然數的比來表示。 正因如此,畢達哥拉斯本人甚至有「萬物皆數」的信念,這裡的數是指自然數(1 , 2 , 3 ,...),而由自然數的比就得到所有正有理數,而有理數集存在「縫隙」這一事實,對當時很多數學家來說可謂極大的打擊;見第一次數學危機。 從古希臘一直到17世紀,數學家們才慢慢接受無理數的存在,並把它和有理數平等地看作數;後來有虚数概念的引入,為加以區別而稱作“實數”,意即“實在的數”。在當時,儘管虛數已經出現並廣為使用,實數的嚴格定義卻仍然是個難題,以至函數、極限和收斂性的概念都被定義清楚之後,才由十九世紀末的戴德金、康托等人對實數進行了嚴格處理。
rdfs:seeAlso
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of Dec 18 2018, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software