About: Random sequence   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:Series108457976, within Data Space : dbpedia.org associated with source document(s)

The concept of a random sequence is essential in probability theory and statistics. The concept generally relies on the notion of a sequence of random variables and many statistical discussions begin with the words "let X1,...,Xn be independent random variables...". Yet as D. H. Lehmer stated in 1951: "A random sequence is a vague notion... in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians".

AttributesValues
rdf:type
rdfs:label
  • Random sequence
  • متتالية عشوائية
  • Sucesión aleatoria
  • Suite aléatoire
rdfs:comment
  • مفهوم المتتالية العشوائية (بالإنجليزية: Random sequence) مهم جدا في نظرية الاحتمال والإحصاء.
  • El concepto de una sucesión aleatoria es esencial en la teoría de la probabilidad y en estadística. El concepto generalmente se basa en la noción de una sucesión de variables aleatorias y muchas discusiones estadísticas comienzan con las palabras "deja que X1,...,Xn sean varaibles aleatorias independientes...". Como D. H. Lehmer dijo en 1951: "Una sucesión aleatoria es una noción vaga... en que cada término es imprevisible para los no iniciados y cuyas cifras pasan un cierto número de pruebas tradicionales con estadísticos."
  • The concept of a random sequence is essential in probability theory and statistics. The concept generally relies on the notion of a sequence of random variables and many statistical discussions begin with the words "let X1,...,Xn be independent random variables...". Yet as D. H. Lehmer stated in 1951: "A random sequence is a vague notion... in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians".
  • En mathématiques, une suite aléatoire, ou suite infinie aléatoire, est une suite de symboles d'un alphabet ne possédant aucune structure, régularité, ou règle de prédiction identifiable. Une telle suite correspond à la notion intuitive de nombres tirés au hasard. La caractérisation mathématique de cette notion est extrêmement difficile, et a fait l'objet d'études et de débats tout au long du XXe siècle. Une première tentative de définition mathématique (insatisfaisante) a été réalisée en 1919 par Richard von Mises. Ce fut l'avènement de la théorie de la calculabilité, dans les années 1930, et de la théorie algorithmique de l'information qui permit d'aboutir dans les années 1970 — au terme d'une succession de travaux menés notamment par Andreï Kolmogorov, Gregory Chaitin, et Per Martin-Löf
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • The concept of a random sequence is essential in probability theory and statistics. The concept generally relies on the notion of a sequence of random variables and many statistical discussions begin with the words "let X1,...,Xn be independent random variables...". Yet as D. H. Lehmer stated in 1951: "A random sequence is a vague notion... in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians". Axiomatic probability theory deliberately avoids a definition of a random sequence. Traditional probability theory does not state if a specific sequence is random, but generally proceeds to discuss the properties of random variables and stochastic sequences assuming some definition of randomness. The Bourbaki school considered the statement "let us consider a random sequence" an abuse of language. During the 20th century various technical approaches to defining random sequences were developed and now three distinct paradigms can be identified.
  • مفهوم المتتالية العشوائية (بالإنجليزية: Random sequence) مهم جدا في نظرية الاحتمال والإحصاء.
  • El concepto de una sucesión aleatoria es esencial en la teoría de la probabilidad y en estadística. El concepto generalmente se basa en la noción de una sucesión de variables aleatorias y muchas discusiones estadísticas comienzan con las palabras "deja que X1,...,Xn sean varaibles aleatorias independientes...". Como D. H. Lehmer dijo en 1951: "Una sucesión aleatoria es una noción vaga... en que cada término es imprevisible para los no iniciados y cuyas cifras pasan un cierto número de pruebas tradicionales con estadísticos."
  • En mathématiques, une suite aléatoire, ou suite infinie aléatoire, est une suite de symboles d'un alphabet ne possédant aucune structure, régularité, ou règle de prédiction identifiable. Une telle suite correspond à la notion intuitive de nombres tirés au hasard. La caractérisation mathématique de cette notion est extrêmement difficile, et a fait l'objet d'études et de débats tout au long du XXe siècle. Une première tentative de définition mathématique (insatisfaisante) a été réalisée en 1919 par Richard von Mises. Ce fut l'avènement de la théorie de la calculabilité, dans les années 1930, et de la théorie algorithmique de l'information qui permit d'aboutir dans les années 1970 — au terme d'une succession de travaux menés notamment par Andreï Kolmogorov, Gregory Chaitin, et Per Martin-Löf — à des définitions faisant aujourd'hui consensus (bien que toujours non tout à fait unanime). Les définitions actuellement acceptées (démontrées équivalentes) du caractère aléatoire d'une suite sont les suivantes : * une suite aléatoire ne doit posséder aucune régularité « exceptionnelle et effectivement testable » (Martin-Löf 1966) ; * une suite aléatoire doit posséder un « contenu informationnel incompressible » (Levin 1974, Chaitin 1975) ; * une suite aléatoire doit être imprévisible, c'est-à-dire qu'aucune « stratégie effective » ne peut mener à un « gain infini » si l'on « parie » sur les termes de la suite (Schnorr (en) 1971). Chacun des termes employés dans les définitions ci-dessus possède une définition mathématique rigoureuse. L'ensemble des suites aléatoires, sur un alphabet quelconque peut être représenté par celles n'utilisant que les chiffres « 0 » ou « 1 » qui peuvent elles-mêmes être mises en relation bijective avec l'ensemble des nombres réels dont le développement numérique écrit en notation binaire est constitué de chiffres « aléatoires ». De fait, la quasi-totalité des études et définitions mathématiques concernant les suites aléatoires sont effectuées en utilisant la traduction de la suite en un nombre réel, compris entre 0 et 1, écrit en binaire, donnant ainsi une simple suite de 0 et de 1. Bien que très fructueuses sur le plan théorique, et menant à d'intéressants corollaires et propriétés, ces définitions sont en fait peu applicables en pratique pour tester le caractère aléatoire d'une véritable suite. Malgré tout, ces définitions commencent à trouver des applications théoriques dans les domaines de la physique, de la biologie ou de la philosophie.
id
  • p/r077350
title
  • Random sequence
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software