About: Projective orthogonal group   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:WikicatQuadraticForms, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FProjective_orthogonal_group

In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group PO(V) = O(V)/ZO(V) = O(V)/{±I} The projective special orthogonal group, PSO, is defined analogously, as the induced action of the special orthogonal group on the associated projective space. Explicitly: PSO(V) = SO(V)/ZSO(V)

AttributesValues
rdf:type
rdfs:label
  • Projective orthogonal group
rdfs:comment
  • In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group PO(V) = O(V)/ZO(V) = O(V)/{±I} The projective special orthogonal group, PSO, is defined analogously, as the induced action of the special orthogonal group on the associated projective space. Explicitly: PSO(V) = SO(V)/ZSO(V)
rdfs:seeAlso
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group PO(V) = O(V)/ZO(V) = O(V)/{±I} where O(V) is the orthogonal group of (V) and ZO(V)={±I} is the subgroup of all orthogonal scalar transformations of V – these consist of the identity and reflection through the origin. These scalars are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" is because the scalar transformations are the center of the orthogonal group. The projective special orthogonal group, PSO, is defined analogously, as the induced action of the special orthogonal group on the associated projective space. Explicitly: PSO(V) = SO(V)/ZSO(V) where SO(V) is the special orthogonal group over V and ZSO(V) is the subgroup of orthogonal scalar transformations with unit determinant. Here ZSO is the center of SO, and is trivial in odd dimension, while it equals {±1} in even dimension – this odd/even distinction occurs throughout the structure of the orthogonal groups. By analogy with GL/SL and GO/SO, the projective orthogonal group is also sometimes called the projective general orthogonal group and denoted PGO. Like the orthogonal group, the projective orthogonal group can be defined over any field and with varied quadratic forms, though, as with the ordinary orthogonal group, the main emphasis is on the real positive definite projective orthogonal group; other fields are elaborated in , below. Except when mentioned otherwise, in the sequel PO and PSO will refer to the real positive definite groups. Like the spin groups and pin groups, which are covers rather than quotients of the (special) orthogonal groups, the projective (special) orthogonal groups are of interest for (projective) geometric analogs of Euclidean geometry, as related Lie groups, and in representation theory. More intrinsically, the (real positive definite) projective orthogonal group PO can be defined as the isometries of real projective space, while PSO can be defined as the orientation-preserving isometries of real projective space (when the space is orientable; otherwise PSO = PO).
title
  • Projective General Orthogonal Group
  • Projective Special Orthogonal Group
urlname
  • ProjectiveGeneralOrthogonalGroup
  • ProjectiveSpecialOrthogonalGroup
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of Apr 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software