About: Projective geometry     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Scientist, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FProjective_geometry

Projective geometry is a topic of mathematics. It is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice versa.

AttributesValues
rdf:type
rdfs:label
  • Projective geometry
  • هندسة إسقاطية
  • Projektive Geometrie
  • Geometría proyectiva
  • Géométrie projective
  • Geometria proiettiva
  • 射影幾何学
  • Projectieve meetkunde
  • Geometria rzutowa
  • Geometria projetiva
  • Проективная геометрия
  • 射影几何
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) في الرياضيات، الهندسة الإسقاطية (بالإنجليزية: Projective geometry) هي دراسة الخصائص الهندسية الثابتة مع التحويلات المنظورية. بشكل شبيه للهندسة الأفينية والهندسة الإقليدية من الممكن تطوير الهندسة الإسقاطية من برنامج إيرلانغين، حيث تكون متحولة بالنسبة للتحويلات. تم تطوير الهندسة الإسقاطية على أيدي جيرار ديسارغو وآخرين الذين قاموا بوضع مبادئ المنظور.
  • Se llama geometría proyectiva a la rama de la matemática que estudia las propiedades de incidencia de las figuras geométricas, pero abstrayéndose totalmente del concepto de medida. A menudo se usa esta palabra también para hablar de la teoría de la proyección llamada geometría descriptiva.
  • En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection.
  • Geometria projetiva ou projectiva, é o estudo das propriedades descritivas das figuras geométricas.A Geometria Projetiva, consolida-se a partir de uma publicação de Jean Victor Poncelet, intitulada Tratado das Propriedades Projetivas das Figuras no ano de 1822. Ampliando a linguagem da "Simples Geometria" aproximando-a da Geometria analítica e, sobretudo oferecendo meios próprios para demonstrar e fazer descobrir as propriedades de que gozam as figuras, quando se as considera de uma maneira abstrata e independente de qualquer grandeza absoluta e determinada.
  • Projective geometry is a topic of mathematics. It is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice versa.
  • Die projektive Geometrie ist ein Teilgebiet der Geometrie. Sie ist aus der perspektivischen Darstellung dreidimensionaler Gegenstände in der zweidimensionalen Ebene hervorgegangen. Im Gegensatz zur „gewöhnlichen“ euklidischen Geometrie gibt es in der projektiven Geometrie keine Parallelen. Auch die mathematischen Strukturen, die in der projektiven Geometrie untersucht werden, heißen projektive Geometrien, siehe dazu den Abschnitt weiter unten.
  • La geometria proiettiva è la parte della geometria che modellizza i concetti intuitivi di prospettiva e orizzonte. Definisce e studia gli enti geometrici usuali (punti, rette, ...) senza utilizzare misure o confronto di lunghezze.
  • 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。
  • In de meetkunde, een deelgebied van de wiskunde, is projectieve meetkunde een meetkunde zonder metriek die vroeg in de 19e eeuw is ontstaan. Ze vond haar oorsprong in de principes van lijnperspectief in de beeldende kunst. Het gebied van de projectieve meetkunde is heden ten dage onderverdeeld in vele onderzoeksdeelgebieden. Twee voorbeelden zijn de projectieve algebraïsche meetkunde (de studie van projectieve variëteiten) en de projectieve differentiaalmeetkunde (de studie van differentiaalinvarianten van de projectieve transformaties).
  • Geometria rzutowa to dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822. Przekształceniem rzutowym jest każde wzajemnie jednoznaczne przekształcenie przestrzeni rzutowej wymiaru powyżej 1 zachowujące współliniowość punktów.
  • Проективная геометрия — раздел геометрии, изучающий проективные плоскости и пространства. Главная особенность проективной геометрии состоит в принципе двойственности, который прибавляет изящную симметрию во многие конструкции. Проективная геометрия может изучаться как с чисто геометрической точки зрения, так с аналитической (с помощью однородных координат) и с алгебраической, рассматривая проективную плоскость как структуру над полем. Часто, и исторически, вещественная проективная плоскость рассматривается как Евклидова плоскость с добавлением «прямой в бесконечности».
  • 在數學裡,投影幾何(projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、投影空間及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及投影微分幾何(研究投影變換的微分不變量)。
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software