About: Piecewise     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatBasicConceptsInSetTheory, within Data Space : dbpedia.org associated with source document(s)

In mathematics, a piecewise-defined function (also called a piecewise function or a hybrid function) is a function which is defined by multiple sub-functions, each sub-function applying to a certain interval of the main function's domain (a sub-domain). Piecewise is actually a way of expressing the function, rather than a characteristic of the function itself, but with additional qualification, it can describe the nature of the function. For example, a piecewise polynomial function is a function that is a polynomial on each of its sub-domains, but possibly a different one on each.

AttributesValues
rdf:type
rdfs:label
  • Piecewise
  • دالة متعددة التعريف
  • Función definida a trozos
  • Fonction affine par morceaux
  • 区分的
  • Stuksgewijs
  • Funções definidas em trechos
  • Кусочно-заданная функция
rdfs:comment
  • في الرياضيات، الدالة متعددة التعريف هي دالة تعرف عن طريق أكثر من دالة، كلٌ تطبق لفترة معينة من مجال الدالة الرئيسة.
  • In de analyse, een deelgebied van de wiskunde, is een stuksgewijs gedefinieerde functie een functie, waarvan de definitie afhankelijk is van de waarde van de onafhankelijke variabele. Wiskundig gezien is een reëel-gewaardeerde functie f van een reële variabele x is een relatie, waarvan de definitie anders op disjuncte deelverzamelingen van haar domein (bekend als deeldomeinen) is gegeven.
  • 区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。たとえば、「区分的に微分可能」や「区分的に連続的微分可能」な函数は、定義域片上ではいずれも微分可能だが、全体としては(つまり定義域片の「境界」で)微分可能でないことが起こり得る。凸解析では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の劣微分が考えられる。
  • Кусочно-заданная функция — функция, определённая на множестве вещественных чисел, заданная на каждом из интервалов, составляющих область определения, отдельной формулой.
  • In mathematics, a piecewise-defined function (also called a piecewise function or a hybrid function) is a function which is defined by multiple sub-functions, each sub-function applying to a certain interval of the main function's domain (a sub-domain). Piecewise is actually a way of expressing the function, rather than a characteristic of the function itself, but with additional qualification, it can describe the nature of the function. For example, a piecewise polynomial function is a function that is a polynomial on each of its sub-domains, but possibly a different one on each.
  • En matemáticas, una función segmentada (también denominada función por , función seccionada o función definida por tramos) es una función cuya definición, (la regla que define la dependencia), llamada regla de correspondencia, cambia dependiendo del valor de la variable independiente. Formalmente, una función real f (definida a trozos) de una variable real x es la relación cuya definición está dada por varios conjuntos disjuntos de su dominio (conocidos como subdominios).
  • En mathématiques, une fonction affine par morceaux est une fonction définie sur une réunion d'intervalles réels et dont la restriction à chacun de ces intervalles est donnée par une expression affine. Sa courbe représentative est alors constituée de segments de droite (éventuellement privés de leurs extrémités) et de points isolés. Une telle fonction n'est en effet pas nécessairement continue.
  • Em matemática, uma função definida em trecho, também conhecida como função definida por partes, é uma função definida por várias sentenças abertas, cuja definição depende do valor da variável independente. Cada uma das sentenças que definem a função estão ligadas a subdomínios disjuntos entre si que estão contidos no domínio da função.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • In mathematics, a piecewise-defined function (also called a piecewise function or a hybrid function) is a function which is defined by multiple sub-functions, each sub-function applying to a certain interval of the main function's domain (a sub-domain). Piecewise is actually a way of expressing the function, rather than a characteristic of the function itself, but with additional qualification, it can describe the nature of the function. For example, a piecewise polynomial function is a function that is a polynomial on each of its sub-domains, but possibly a different one on each. The word piecewise is also used to describe any property of a piecewise-defined function that holds for each piece but not necessarily hold for the whole domain of the function. A function is piecewise differentiable or piecewise continuously differentiable if each piece is differentiable throughout its subdomain, even though the whole function may not be differentiable at the points between the pieces. In convex analysis, the notion of a derivative may be replaced by that of the subderivative for piecewise functions. Although the "pieces" in a piecewise definition need not be intervals, a function is not called "piecewise linear" or "piecewise continuous" or "piecewise differentiable" unless the pieces are intervals.
  • في الرياضيات، الدالة متعددة التعريف هي دالة تعرف عن طريق أكثر من دالة، كلٌ تطبق لفترة معينة من مجال الدالة الرئيسة.
  • En mathématiques, une fonction affine par morceaux est une fonction définie sur une réunion d'intervalles réels et dont la restriction à chacun de ces intervalles est donnée par une expression affine. Sa courbe représentative est alors constituée de segments de droite (éventuellement privés de leurs extrémités) et de points isolés. Une telle fonction n'est en effet pas nécessairement continue. Les fonctions affines par morceaux permettent de représenter une suite de déplacements à vitesse constante le long d'un axe en fonction du temps, mais aussi certains signaux électriques comme le signal carré ou en dents de scie. Plus généralement, ces fonctions présentent un intérêt majeur de se prêter facilement aux calculs tout en approchant n'importe quelle fonction continue. Elles sont donc très utiles en analyse numérique, par exemple dans le calcul numérique d'une intégrale. Mais elles sont aussi utilisées en pratique lorsqu'il n'existe pas de formulation simple valable sur tout le domaine de valeurs considéré, comme dans le mode de calcul de l'impôt en France à partir du quotient familial.
  • En matemáticas, una función segmentada (también denominada función por , función seccionada o función definida por tramos) es una función cuya definición, (la regla que define la dependencia), llamada regla de correspondencia, cambia dependiendo del valor de la variable independiente. Formalmente, una función real f (definida a trozos) de una variable real x es la relación cuya definición está dada por varios conjuntos disjuntos de su dominio (conocidos como subdominios). La palabra "A trozos" se usa para describir cualquier propiedad de una función definida a trozos que se cumple para cada trozo aunque podría no cumplirse para todo el dominio de f. Por ejemplo, una función es diferenciable a trozos si cada trozo es diferenciable a lo largo del dominio. En análisis convexo, la noción de la derivada puede ser reemplazada por la de partessubderivada para funciones definidas a trozos.[cita requerida]
  • In de analyse, een deelgebied van de wiskunde, is een stuksgewijs gedefinieerde functie een functie, waarvan de definitie afhankelijk is van de waarde van de onafhankelijke variabele. Wiskundig gezien is een reëel-gewaardeerde functie f van een reële variabele x is een relatie, waarvan de definitie anders op disjuncte deelverzamelingen van haar domein (bekend als deeldomeinen) is gegeven.
  • 区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。たとえば、「区分的に微分可能」や「区分的に連続的微分可能」な函数は、定義域片上ではいずれも微分可能だが、全体としては(つまり定義域片の「境界」で)微分可能でないことが起こり得る。凸解析では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の劣微分が考えられる。
  • Em matemática, uma função definida em trecho, também conhecida como função definida por partes, é uma função definida por várias sentenças abertas, cuja definição depende do valor da variável independente. Cada uma das sentenças que definem a função estão ligadas a subdomínios disjuntos entre si que estão contidos no domínio da função. A palavra trecho é também usada para descrever qualquer propriedade de uma função definida em trechos que sustentam-se para cada parte mas podem não sustentar-se para o domínio inteiro da função. Uma função é diferenciável em trechos ou diferenciável continuamente em trechos se cada parte é diferenciável completamente em seu domínio. Em análise complexa, a noção de uma derivada pode ser substituída por aquela da subderivada para funções em trechos. Apesar das "partes" em uma definição em trechos não necessitarem ser intervalos, uma função não é chamada "linear em trechos" ou "contínua em trechos" ou "diferenciável em trechos" exceto se as partes sejam intervalos.
  • Кусочно-заданная функция — функция, определённая на множестве вещественных чисел, заданная на каждом из интервалов, составляющих область определения, отдельной формулой.
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software