About: Operator theory     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Book, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FOperator_theory

In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra. The description of operator algebras is part of operator theory.

AttributesValues
rdf:type
rdfs:label
  • Operator theory
  • Operatorenrechnung
  • Teoria degli operatori
  • 作用素論
  • Operatorentheorie
  • Теория операторов
  • Teoria dos operadores
rdfs:comment
  • In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra. The description of operator algebras is part of operator theory.
  • De operatorentheorie of theorie van lineaire operatoren is een onderdeel van de functionaalanalyse, op haar beurt een tak van de wiskunde.
  • 数学における作用素論(さようそろん、英: Operator theory)は、微分作用素や積分作用素をはじめとする線型作用素の研究である。各作用素は、有界性や閉性などといった特徴によって抽象的に表すことができ、また非線型作用素なども視野に含むこともあり得る。そのような研究は函数空間の位相に非常に依存しており、函数解析学の一分科を成す。 作用素の集合が体上の多元環を成すならば、それを作用素環と呼ぶ。作用素環を記述することもまた作用素論の一部である。
  • A teoria dos operadores é o ramo da análise funcional que lida com operadores lineares limitados e suas propriedades. A teoria estende a teoria espectral para operadores limitados, podendo ser ramificada em dois ramos, de forma bem geral, embora ocorram consideráveis sopreposições entre eles.
  • Unter Operatorenrechnung versteht man in der Elektrotechnik und der Systemtheorie der Nachrichtentechnik verschiedene historisch gewachsene mathematische Kalküle zur Beschreibung des Verhaltens von linearen zeitinvarianten Systemen. Anstelle der „klassischen“ Beschreibung durch Differentialgleichungen und Differentialgleichungssysteme und deren aufwändiger Lösung beschreibt die Operatorenrechnung das Verhalten der elementaren Bauelemente und der komplexen Systeme durch Operatoren und führt damit die Differentialgleichungen auf algebraische Gleichungen zurück.
  • In matematica, la teoria degli operatori è un settore dell'analisi funzionale che si occupa degli operatori (ovvero funzioni) che sono lineari e sono definiti tra spazi di funzioni, come ad esempio gli operatori differenziali e integrali. Di particolare interesse sono gli operatori limitati, gli operatori chiusi e quelli normali; questi ultimi includono gli operatori autoaggiunti, emisimmetrici e unitari. In generale, il loro studio è fortemente legato alla topologia operatoriale definita negli spazi in cui vivono.
  • Теория операторов — раздел функционального анализа, который изучает свойства непрерывных линейных отображений между нормированными пространствами. Вообще говоря, оператор — это аналог самой обычной функции или матрицы в конечномерном пространстве. Но оператор может действовать и в бесконечномерных пространствах. Отображение из векторного пространства в векторное пространство называется линейным оператором если для любых и в и любых скаляров и . Часто пишут вместо . Линейный оператор из нормированного пространства в нормированное пространство такое что для всех в . Наименьшая константа и обозначается пишут вместо
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra. The description of operator algebras is part of operator theory.
  • Unter Operatorenrechnung versteht man in der Elektrotechnik und der Systemtheorie der Nachrichtentechnik verschiedene historisch gewachsene mathematische Kalküle zur Beschreibung des Verhaltens von linearen zeitinvarianten Systemen. Anstelle der „klassischen“ Beschreibung durch Differentialgleichungen und Differentialgleichungssysteme und deren aufwändiger Lösung beschreibt die Operatorenrechnung das Verhalten der elementaren Bauelemente und der komplexen Systeme durch Operatoren und führt damit die Differentialgleichungen auf algebraische Gleichungen zurück. Mathematisch liegt dabei ein in den Dimensionen endlicher Funktionenvektorraum vor, welcher sich immer auch explizit algebraisch formulieren lässt. Ein System wird dabei durch den folgenden einfachen algebraischen Zusammenhang beschrieben: In allen Operatorenrechnungen verschwindet der Unterschied zwischen den Signalen und den Systemcharakteristiken. Beide werden gleichwertig durch die jeweiligen Operatoren repräsentiert. Die unterschiedlichen Operatorenrechnungen entstanden in der nachfolgend gegebenen historischen Reihenfolge:
  • In matematica, la teoria degli operatori è un settore dell'analisi funzionale che si occupa degli operatori (ovvero funzioni) che sono lineari e sono definiti tra spazi di funzioni, come ad esempio gli operatori differenziali e integrali. Di particolare interesse sono gli operatori limitati, gli operatori chiusi e quelli normali; questi ultimi includono gli operatori autoaggiunti, emisimmetrici e unitari. In generale, il loro studio è fortemente legato alla topologia operatoriale definita negli spazi in cui vivono. Se un insieme di operatori forma un'algebra su di un campo, si tratta di un'algebra di operatori.
  • De operatorentheorie of theorie van lineaire operatoren is een onderdeel van de functionaalanalyse, op haar beurt een tak van de wiskunde.
  • 数学における作用素論(さようそろん、英: Operator theory)は、微分作用素や積分作用素をはじめとする線型作用素の研究である。各作用素は、有界性や閉性などといった特徴によって抽象的に表すことができ、また非線型作用素なども視野に含むこともあり得る。そのような研究は函数空間の位相に非常に依存しており、函数解析学の一分科を成す。 作用素の集合が体上の多元環を成すならば、それを作用素環と呼ぶ。作用素環を記述することもまた作用素論の一部である。
  • Теория операторов — раздел функционального анализа, который изучает свойства непрерывных линейных отображений между нормированными пространствами. Вообще говоря, оператор — это аналог самой обычной функции или матрицы в конечномерном пространстве. Но оператор может действовать и в бесконечномерных пространствах. Отображение из векторного пространства в векторное пространство называется линейным оператором если для любых и в и любых скаляров и . Часто пишут вместо . Линейный оператор из нормированного пространства в нормированное пространство называется ограниченным если найдется положительное вещественное число такое что для всех в . Наименьшая константа удовлетворяющая такому условию называется нормой оператора и обозначается . Нетрудно видеть, что линейный оператор между нормированными пространствами ограничен тогда и только тогда, когда он непрерывен. Под термином «оператор» в функциональном анализе обычно понимают ограниченный линейный оператор. Множество всех (ограниченных линейных) операторов из нормированного пространства в нормированное пространство обозначается . В случае когда пишут вместо . Если — гильбертово пространство, то обычно пишут вместо . На можно ввести структуру векторного пространства через и , где , , а — произвольный скаляр. С введённой операторной нормой превращается в нормированное пространство. В частности, и для любых и произвольного скаляра . Пространство является банаховым тогда и только тогда когда — банахово. Пусть и — нормированные пространства, и . Композиция и обозначается и называется произведением операторов и . При этом и .Если — банахово пространство, то , оснащённое произведением, является банаховой алгеброй. В теории операторов можно выделить несколько основных разделов: 1. * Спектральная теория изучает спектр оператора. 2. * Классы операторов. В частности, компактные операторы, фредгольмовы операторы, изоморфизмы, изометрии, строго сингулярные операторы и т. п. Изучают также неограниченные операторы и частично определенные операторы, в частности замкнутые операторы. 3. * Операторы на специальных нормированных пространствах. 4. * На гильбертовых пространствах изучают самосопряжённые, нормальные, унитарные, положительные операторы и др. 5. * На функциональных пространствах: дифференциальные, псевдодифференциальные, интегральные, и псевдоинтегральные операторы; операторы умножения, подстановки, подстановки с весом и др. 6. * На банаховых решётках: положительные операторы, регулярные операторы и др. 7. * Совокупности операторов (то есть, подмножества ): операторные алгебры, операторные полугруппы и др. 8. * Теория инвариантных подпространств.
  • A teoria dos operadores é o ramo da análise funcional que lida com operadores lineares limitados e suas propriedades. A teoria estende a teoria espectral para operadores limitados, podendo ser ramificada em dois ramos, de forma bem geral, embora ocorram consideráveis sopreposições entre eles.
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software