About: Open set     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain an open ball around each of their points (or, equivalently, a set is open if it doesn't contain any of its boundary points); however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open (called the discrete topology), or no set can be open but the space itsel

AttributesValues
rdfs:label
  • Open set
  • مجموعة مفتوحة
  • Offene Menge
  • Conjunto abierto
  • Ouvert (topologie)
  • Insieme aperto
  • 開集合
  • Open verzameling
  • Zbiór otwarty
  • Conjunto aberto
  • Открытое множество
  • 开集
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) في الطوبولوجيا، تدعى المجموعة U بالمجموعة المفتوحة إذا كان، ابتداءً من أي نقطة x في المجموعة U من الممكن التحرك في أي اتجاه بشكل بسيط دون الخروج خارج المجموعة. بشكل آخر، إن المسافة بين أي نقطة x في المجموعة U ومحيط المجموعة U تكون دائماً أكبر من الصفر. وبصفة عامة في فضاء طوبولوجي (E,T) المجموعات المفتوحة أو المفتوحات اختصارا هي عناصر T.
  • En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique.
  • Il concetto di insieme aperto si trova in matematica in molti ambiti e con diversi gradi di generalità. Intuitivamente, un insieme è aperto se è possibile spostarsi sufficientemente poco in ogni direzione a partire da ogni punto dell'insieme senza uscire dall'insieme stesso. In realtà, seguendo le definizioni generali ci si può allontanare abbastanza da questa idea intuitiva; attraverso la definizione di insieme aperto si possono definire concetti come "vicino", "lontano", "attaccato", "separato"; definizioni non intuitive di insiemi aperti corrisponderanno a situazioni matematiche in cui questi concetti vengono utilizzati in modo non intuitivo.
  • 開集合(かいしゅうごう、英: open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。
  • Zbiór otwarty w danej przestrzeni topologicznej – dowolny element rodziny . Dopełnienie zbioru otwartego nazywa się jest zbiorem domkniętym. Istnieją zbiory, które są jednocześnie i otwarte i domknięte (tzw. zbiory domknięto-otwarte), np. zbiór pusty i cała przestrzeń . Na prostej z topologią strzałki takimi zbiorami są przedziały postaci . W klasie przestrzeni metrycznych zbiory otwarte można scharakteryzować jako te i tylko te, które wraz z każdym swoim punktem zawierają pewną kulę otwartą o środku w tym punkcie.
  • Em topologia, um conjunto diz-se aberto se uma pequena variação de um ponto desse conjunto mantém-no no conjunto.
  • Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью. Открытое множество является фундаментальным понятием общей топологии. Термин «открытое множество» применяется к подмножествам топологических пространств и никак не характеризует «само» множество (ни в смысле теории множеств, ни даже в смысле индуцированной на нём топологической структуры).
  • 開集是指不包含自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式 规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式 ,或者 规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间)
  • In topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain an open ball around each of their points (or, equivalently, a set is open if it doesn't contain any of its boundary points); however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open (called the discrete topology), or no set can be open but the space itsel
  • In dem Teilgebiet Topologie der Mathematik ist eine offene Menge eine Menge mit einer genau definierten Eigenschaft (siehe unten). Anschaulich ist eine Menge offen, wenn ihre Elemente nur von Elementen dieser Menge umgeben sind, mit anderen Worten, wenn kein Element der Menge auf ihrem Rand liegt. Die Komplementärmenge einer offenen Menge nennt man abgeschlossene Menge. Diese Mengen sind dadurch charakterisiert, dass sie alle ihre Häufungspunkte enthalten. Ein einfaches Beispiel einer offenen Menge ist das Intervall in den reellen Zahlen. Jede reelle Zahl mit der Eigenschaft mehr. mit
  • Un conjunto abierto, en topología y otras ramas de las matemáticas, es un conjunto en el que todos y cada uno de sus elementos están rodeados por elementos que también pertenecen al conjunto; o, dicho de una manera más intuitiva, que ningún elemento de dicho conjunto pertenece también a la frontera de éste. En términos más rigurosos se dice que en cualquier elemento del conjunto puede centrarse una bola abierta que está totalmente contenida en el conjunto. Se puede generalizar el concepto de ‘bola’ como los elementos que están muy cerca de otro en cualquier dirección, rodeándolo, pero para ello es necesario definir una función distancia que permita evaluar la lejanía o cercanía entre los objetos del conjunto, constituyendo así un espacio métrico —un conjunto más una definición de distancia
  • In de metrische topologie en aanverwante gebieden van de wiskunde wordt een verzameling, U, open genoemd, indien, intuïtief gesproken, vanaf elk punt x in U men een infinitesimaal kleine beweging in elke richting kan maken en in alle gevallen nog steeds deel uitmaakt van de verzameling U. Met andere woorden, de afstand tussen elk punt x in U en de rand van U is altijd groter dan nul. voor gegeven x in X en r een reëel getal groter dan 0.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • In topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain an open ball around each of their points (or, equivalently, a set is open if it doesn't contain any of its boundary points); however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open (called the discrete topology), or no set can be open but the space itself and the empty set (the indiscrete topology). In practice, however, open sets are usually chosen to be similar to the open intervals of the real line. The notion of an open set provides a fundamental way to speak of nearness of points in a topological space, without explicitly having a concept of distance defined. Once a choice of open sets is made, the properties of continuity, connectedness, and compactness, which use notions of nearness, can be defined using these open sets. Each choice of open sets for a space is called a topology. Although open sets and the topologies that they comprise are of central importance in point-set topology, they are also used as an organizational tool in other important branches of mathematics. Examples of topologies include the Zariski topology in algebraic geometry that reflects the algebraic nature of varieties, and the topology on a differential manifold in differential topology where each point within the space is contained in an open set that is homeomorphic to an open ball in a finite-dimensional Euclidean space.
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) في الطوبولوجيا، تدعى المجموعة U بالمجموعة المفتوحة إذا كان، ابتداءً من أي نقطة x في المجموعة U من الممكن التحرك في أي اتجاه بشكل بسيط دون الخروج خارج المجموعة. بشكل آخر، إن المسافة بين أي نقطة x في المجموعة U ومحيط المجموعة U تكون دائماً أكبر من الصفر. وبصفة عامة في فضاء طوبولوجي (E,T) المجموعات المفتوحة أو المفتوحات اختصارا هي عناصر T.
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software