About: Module (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatMathematicalStructures, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FModule_%28mathematics%29

In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring (with identity) and a multiplication (on the left and/or on the right) is defined between elements of the ring and elements of the module.

AttributesValues
rdf:type
rdfs:label
  • Module (mathematics)
  • فضاء حلقي
  • Modul (Mathematik)
  • Módulo (matemática)
  • Module sur un anneau
  • Modulo (algebra)
  • Moduul
  • 環上の加群
  • Moduł (matematyka)
  • Módulo (álgebra)
  • Модуль над кольцом
rdfs:comment
  • Ein Modul [ˈmoːdul] (Maskulinum, Plural: Moduln [ˈmoːduln], die Deklination ist ähnlich wie die von Konsul) ist eine algebraische Struktur, die eine Verallgemeinerung eines Vektorraums darstellt.
  • En mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, « un module est à un anneau ce qu'un espace vectoriel est à un corps » : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats spectaculaires de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
  • Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.
  • 抽象代数学における環上の加群(かぐん、英: module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。
  • Em álgebra abstrata, o conceito de módulo sobre um anel é a generalização da noção de espaço vetorial, em que, em vez de um corpo, temos um anel como o conjunto de escalares. Assim, um módulo, como o espaço vetorial, é o produto entre elementos de um grupo abeliano com um anel. A multiplicação é associativa e distributiva. Modulos estão fortemente relacionados à representação de grupos. Eles também são um conceito central em álgebra comutativa e álgebra homológica e são usados largamente em topologia algébrica e geometria algébrica.
  • Мо́дуль над кольцо́м — одно из основных понятий в общей алгебре, являющееся обобщением двух алгебраических понятий — векторного пространства (фактически, векторное пространство — это модуль над полем), и абелевой группы (которая является модулем над кольцом целых чисел ). Понятие модуля лежит в основе коммутативной алгебры, которая играет важную роль в различных областях математики, таких как * алгебраическая геометрия, * гомологическая алгебра, * теория представлений групп.
  • 在抽象代數中,在環上的模的概念是對向量空間概念的推廣,這里不再要求純量位于域中,轉而純量可以位于任意環中。 因此,模同向量空間一樣是加法阿貝爾群;定義了在環元素和模元素之間乘積,并且這個乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。
  • In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring (with identity) and a multiplication (on the left and/or on the right) is defined between elements of the ring and elements of the module.
  • الفضاء الحلقي هو كائن رياضي يتسنى فيه الجمع بين الأشياء تبادليًّا من خلال معاملات الضرب، وتتحقق فيه معظم قواعد التلاعب بالمتجهات. يشبه الفضاء الحلقي كثيرًا الفضاء المتجهي تجريديًّا، وإن كانت تؤخذ المعاملات فيها في حلقات والتي هي كائنات جبرية أعم من الحقول المستخدَمة في الفضاء المتجهي. والفضاء المتجهي الذي يأخذ معاملاته في حلقة يسمى فضاءً متجهيًّا على . تمثل الفضاءات الحلقية الأداة البسيطة في الجبر التماثلي. وتتضمن الأمثلة عليها مجموعة الأعداد الصحيحة والشبكية المكعبة في البعد ورمزها ، وكذلك حلقة الزمرة لأي زمرة. حيث و عدد صحيح ثابت تشكل فضاءً حلقيًّا جزئيًّا، حيث لكل في ، و لا تزال في . بإعطاء عددين صحيحين
  • Sea R un anillo con identidad y sea 1R su identidad multiplicativa. Un R-modulo izquierdo de M es un grupo abeliano (M, +) y una operación ⋅ : R × M → Mtal que para todo r, s en R, x, y en M, se tiene 1. * (rs)x = r(sx) 2. * (r+s)x = rx+sx 3. * r(x+y) = rx+ry 4. * 1x = x Generalmente, se escribe simplemente "un R - módulo izquierdo M" o RM. Si R es conmutativo, entonces los R-módulos a la izquierda son lo mismo que R-módulos a la derecha y se llaman simplemente R-módulos.
  • In matematica, e in particolare in algebra, un modulo è una struttura algebrica che generalizza il concetto di spazio vettoriale richiedendo che gli scalari non costituiscano un campo ma un anello: un modulo su un anello A è quindi un gruppo abeliano M su cui è definita un'operazione che associa ad ogni elemento di A e ad ogni elemento di M un nuovo elemento di M. La nozione di modulo è centrale nell'algebra commutativa e nell'algebra omologica, e forma la base della teoria delle rappresentazioni dei gruppi; è inoltre usata nella geometria algebrica e nella topologia algebrica.
  • In de abstracte algebra, een deelgebied van de wiskunde, is het concept van een moduul over een ring een veralgemening van de notie van een vectorruimte. In plaats van te eisen dat de scalairen in een lichaam liggen, mogen de "scalairen" in een willekeurige ring liggen. Modulen zijn veralgemeningen van abelse groepen, die op hun beurt modulen over zijn. Modulen zijn een van de centrale begrippen van de commutatieve algebra en de homologische algebra. Zij worden op grote schaal gebruikt in de algebraïsche meetkunde en de algebraïsche topologie.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software