An Entity of Type : yago:WikicatPolynomials, within Data Space : dbpedia.org associated with source document(s)

In mathematics, Maclaurin's inequality, named after Colin Maclaurin, is a refinement of the inequality of arithmetic and geometric means. Let a1, a2, ..., an be positive real numbers, and for k = 1, 2, ..., n define the averages Sk as follows: The numerator of this fraction is the elementary symmetric polynomial of degree k in the n variables a1, a2, ..., an, that is, the sum of all products of k of the numbers a1, a2, ..., an with the indices in increasing order. The denominator is the number of terms in the numerator, the binomial coefficient with equality if and only if all the ai are equal.

AttributesValues
rdf:type
rdfs:label
• Maclaurin's inequality
rdfs:comment
• In mathematics, Maclaurin's inequality, named after Colin Maclaurin, is a refinement of the inequality of arithmetic and geometric means. Let a1, a2, ..., an be positive real numbers, and for k = 1, 2, ..., n define the averages Sk as follows: The numerator of this fraction is the elementary symmetric polynomial of degree k in the n variables a1, a2, ..., an, that is, the sum of all products of k of the numbers a1, a2, ..., an with the indices in increasing order. The denominator is the number of terms in the numerator, the binomial coefficient with equality if and only if all the ai are equal.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
• In mathematics, Maclaurin's inequality, named after Colin Maclaurin, is a refinement of the inequality of arithmetic and geometric means. Let a1, a2, ..., an be positive real numbers, and for k = 1, 2, ..., n define the averages Sk as follows: The numerator of this fraction is the elementary symmetric polynomial of degree k in the n variables a1, a2, ..., an, that is, the sum of all products of k of the numbers a1, a2, ..., an with the indices in increasing order. The denominator is the number of terms in the numerator, the binomial coefficient Maclaurin's inequality is the following chain of inequalities: with equality if and only if all the ai are equal. For n = 2, this gives the usual inequality of arithmetic and geometric means of two numbers. Maclaurin's inequality is well illustrated by the case n = 4: Maclaurin's inequality can be proved using the Newton's inequalities.
id
title
• MacLaurin's Inequality
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
is known for of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)