About: Lamellar structure   Goto Sponge  NotDistinct  Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLamellar_structure

Lamellar structures or microstructures are composed of fine, alternating layers of different materials in the form of lamellae. They are often observed in cases where a phase transformation front moves quickly, leaving behind two solid products, as in rapid cooling of eutectic (such as solder) or eutectoid (such as pearlite) systems. In biology, normal adult bones possess a lamellar structure which may be disrupted by some diseases.

AttributesValues
rdfs:label
  • Lamellar structure
  • ラメラ構造
rdfs:comment
  • ラメラ構造(ラメラストラクチャー=液晶構造)とは液体と固体の中間にある物質を示す液晶状態の中の一つである。液晶状態を生成させるための方法=サーモトロピック液晶(Thermotropic Liquid Crystal)=温度転移形 とリオトロピック液晶(Lyotropic Liquid)=濃度転移形に分類される。
  • Lamellar structures or microstructures are composed of fine, alternating layers of different materials in the form of lamellae. They are often observed in cases where a phase transformation front moves quickly, leaving behind two solid products, as in rapid cooling of eutectic (such as solder) or eutectoid (such as pearlite) systems. In biology, normal adult bones possess a lamellar structure which may be disrupted by some diseases.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • Lamellar structures or microstructures are composed of fine, alternating layers of different materials in the form of lamellae. They are often observed in cases where a phase transformation front moves quickly, leaving behind two solid products, as in rapid cooling of eutectic (such as solder) or eutectoid (such as pearlite) systems. Such conditions force phases of different composition to form but allow little time for diffusion to produce those phases' equilibrium compositions. Fine lamellae solve this problem by shortening the diffusion distance between phases, but their high surface energy makes them unstable and prone to break up when annealing allows diffusion to progress. A deeper eutectic or more rapid cooling will result in finer lamellae; as the size of an individual lamellum approaches zero, the system will instead retain its high-temperature structure. Two common cases of this include cooling a liquid to form an amorphous solid, and cooling eutectoid austenite to form martensite. In biology, normal adult bones possess a lamellar structure which may be disrupted by some diseases.
  • ラメラ構造(ラメラストラクチャー=液晶構造)とは液体と固体の中間にある物質を示す液晶状態の中の一つである。液晶状態を生成させるための方法=サーモトロピック液晶(Thermotropic Liquid Crystal)=温度転移形 とリオトロピック液晶(Lyotropic Liquid)=濃度転移形に分類される。
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git7 as of May 29 2018


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of Dec 18 2018, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software