About: Kronecker's theorem   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org associated with source document(s)

In mathematics, Kronecker's theorem is a theorem about diophantine approximation, introduced by Leopold Kronecker (). Kronecker's approximation theorem had been firstly proved by L. Kronecker in the end of the 19th century. It has been now revealed to relate to the idea of n-torus and Mahler measure since the later half of the 20th century. In terms of physical systems, it has the consequence that planets in circular orbits moving uniformly around a star will, over time, assume all alignments, unless there is an exact dependency between their orbital periods.

AttributesValues
rdf:type
rdfs:label
  • Kronecker's theorem
  • Teorema de Kronecker
  • Théorème de Kronecker (approximation diophantienne)
  • クロネッカーの定理
rdfs:comment
  • In mathematics, Kronecker's theorem is a theorem about diophantine approximation, introduced by Leopold Kronecker (). Kronecker's approximation theorem had been firstly proved by L. Kronecker in the end of the 19th century. It has been now revealed to relate to the idea of n-torus and Mahler measure since the later half of the 20th century. In terms of physical systems, it has the consequence that planets in circular orbits moving uniformly around a star will, over time, assume all alignments, unless there is an exact dependency between their orbital periods.
  • Le théorème de Kronecker en théorie des nombres est un résultat d'approximation diophantienne simultanée de N réels. Il généralise (dans une certaine mesure) le théorème d'approximation de Dirichlet.
  • 数学では、クロネッカーの定理(Kronecker's theorem)は、レオポルト・クロネッカー(Leopold Kronecker)の名前に因んだ 2つの定理のうちのいづれかである。
  • En matemáticas, el teorema de Kronecker es un resultado en aproximación diofántica aplicado a muchos números reales xi, para 1 ≤ i ≤ N, que generaliza el teorema de equidistribución, el hecho de que un subgrupo cíclico infinito del círculo unitario es un subconjunto denso. En términos de sistemas físicos, tiene como consecuencia que los planetas en órbitas circulares moviéndose de forma uniforme alrededor de estrellas asumirán, con el tiempo, todos los alineamientos, a menos que haya una dependencia exacta entre sus periodos orbitales. T = RN/ZN, T′ = T, χ(P) = 1. Véase: conjunto de Kronecker
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In mathematics, Kronecker's theorem is a theorem about diophantine approximation, introduced by Leopold Kronecker (). Kronecker's approximation theorem had been firstly proved by L. Kronecker in the end of the 19th century. It has been now revealed to relate to the idea of n-torus and Mahler measure since the later half of the 20th century. In terms of physical systems, it has the consequence that planets in circular orbits moving uniformly around a star will, over time, assume all alignments, unless there is an exact dependency between their orbital periods.
  • En matemáticas, el teorema de Kronecker es un resultado en aproximación diofántica aplicado a muchos números reales xi, para 1 ≤ i ≤ N, que generaliza el teorema de equidistribución, el hecho de que un subgrupo cíclico infinito del círculo unitario es un subconjunto denso. En términos de sistemas físicos, tiene como consecuencia que los planetas en órbitas circulares moviéndose de forma uniforme alrededor de estrellas asumirán, con el tiempo, todos los alineamientos, a menos que haya una dependencia exacta entre sus periodos orbitales. En el caso de N números, tomados como una sola N-tupla y un punto P del toro T = RN/ZN, la clausura del subgrupo <P> generado por P será finita, o algún toro T′ contenido en T. El teorema de Kronecker original (Leopold Kronecker, 1884) establecía que la condición necesaria para T′ = T, que es la de que los números xi junto con 1 deberían ser linealmente independientes sobre los números racionales, también es suficiente. Aquí es fácil de ver que si alguna combinación lineal de los xi y 1 con coeficientes no nulos racionales es cero, entonces los coeficientes deben tomarse como enteros y un carácter χ del grupo T diferente al carácter trivial toma el valor 1 en P. Por la dualidad de Pontryagin tenemos T′ contenida en el núcleo de χ, y por tanto no es igual a T. De hecho, un uso exhaustivo de la dualidad de Pontryagin muestra que el teorema de Kronecker describe la clausura de <P> como la intersección de los núcleos de χ con χ(P) = 1. Esto da una conexión de Galois (antítona) entre subgrupos cerrados monogénicos de T (aquellos con un solo generador, en el sentido topológico) y conjuntos de caracteres con núcleo que contienen un punto dado. No todos los subgrupos cerrados aparecen como monogénicos; por ejemplo, un subgrupo que tiene un toro de dimensión ≥ 1 como componente conectado del elemento identidad, y que no está conectado, no puede ser tal subgrupo. El teorema deja abierta la cuestión de cómo de bien (uniformemente) cierran la clausura los múltiples mP de P. Véase: conjunto de Kronecker
  • Le théorème de Kronecker en théorie des nombres est un résultat d'approximation diophantienne simultanée de N réels. Il généralise (dans une certaine mesure) le théorème d'approximation de Dirichlet.
  • 数学では、クロネッカーの定理(Kronecker's theorem)は、レオポルト・クロネッカー(Leopold Kronecker)の名前に因んだ 2つの定理のうちのいづれかである。
authorlink
  • Leopold Kronecker
first
  • Leopold
  • A.L.
id
  • k/k055910
last
  • Onishchik
  • Kronecker
title
  • Kronecker's theorem
year
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
is known for of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software