About: Jordan–Chevalley decomposition   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:WikicatMatrixDecompositions, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent parts. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is important in the study of algebraic groups. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form.

AttributesValues
rdf:type
rdfs:label
  • Jordan-Chevalley-Zerlegung
  • Décomposition de Dunford
  • Jordan–Chevalley decomposition
rdfs:comment
  • In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent parts. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is important in the study of algebraic groups. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form.
  • Die Jordan–Chevalley-Zerlegung (gelegentlich auch Dunford-Zerlegung) ist wichtig für das Studium von Lie-Algebren und algebraischen Gruppen. Benannt ist sie nach Marie Ennemond Camille Jordan und Claude Chevalley. Unter der (additiven) Jordan-Chevalley-Zerlegung eines Endomorphismus eines endlichdimensionalen Vektorraums über einem algebraisch abgeschlossenen Körper versteht man die Summe , worin ein halbeinfacher (also diagonalisierbarer) und ein nilpotenter Endomorphismus sind, die miteinander kommutieren, das heißt . Ist allgemeiner eine halbeinfache Lie-Algebra (mit Lie-Klammer , so bezeichnet man ,
  • En mathématiques, plus précisément en algèbre linéaire, la décomposition de Dunford (ou décomposition de Jordan-Chevalley) s'inscrit dans le contexte de la réduction d'endomorphisme, et prouve que tout endomorphisme u est la somme d'un endomorphisme diagonalisable d et d'un endomorphisme nilpotent n, les deux endomorphismes d et n commutant et étant uniques. Ce n'est pas une « réduction » dans le sens où elle n'est pas maximale : il est parfois possible de pousser la décomposition en sous-espaces vectoriels stables plus petits.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • En mathématiques, plus précisément en algèbre linéaire, la décomposition de Dunford (ou décomposition de Jordan-Chevalley) s'inscrit dans le contexte de la réduction d'endomorphisme, et prouve que tout endomorphisme u est la somme d'un endomorphisme diagonalisable d et d'un endomorphisme nilpotent n, les deux endomorphismes d et n commutant et étant uniques. Cette décomposition a été démontrée une première fois en 1870 par Camille Jordan, puis dans les années 1950 par Claude Chevalley dans le contexte de la théorie des groupes algébriques. Dans le monde francophone, elle est parfois attribuée à tort à Nelson Dunford, dont les travaux sont postérieurs à ceux de Chevalley. Ce n'est pas une « réduction » dans le sens où elle n'est pas maximale : il est parfois possible de pousser la décomposition en sous-espaces vectoriels stables plus petits. Elle prend comme hypothèses que l'espace vectoriel est de dimension finie et que le polynôme minimal est scindé, c'est-à-dire qu'il s'exprime comme produit de polynômes du premier degré. Cette seconde hypothèse est toujours vérifiée si le corps est algébriquement clos, comme celui des nombres complexes. Dans le cas ou la propriété n'est pas vérifiée, il est possible d'étendre le corps à sa clôture algébrique, et l'espace vectoriel à ce nouveau corps et dans ce contexte d'appliquer la décomposition de Dunford. Le corps des nombres réels se voit par exemple généralement étendre pour permettre une application de cette décomposition. Cette décomposition est largement appliquée. Elle permet un calcul matriciel souvent rapide. C'est néanmoins souvent sous la forme de la réduction de Jordan qu'elle est utilisée.
  • Die Jordan–Chevalley-Zerlegung (gelegentlich auch Dunford-Zerlegung) ist wichtig für das Studium von Lie-Algebren und algebraischen Gruppen. Benannt ist sie nach Marie Ennemond Camille Jordan und Claude Chevalley. Unter der (additiven) Jordan-Chevalley-Zerlegung eines Endomorphismus eines endlichdimensionalen Vektorraums über einem algebraisch abgeschlossenen Körper versteht man die Summe , worin ein halbeinfacher (also diagonalisierbarer) und ein nilpotenter Endomorphismus sind, die miteinander kommutieren, das heißt . Ist allgemeiner eine halbeinfache Lie-Algebra (mit Lie-Klammer ) über einem algebraisch abgeschlossenen Körper der Charakteristik 0 und , so bezeichnet man als (additive abstrakte) Jordan-Chevalley-Zerlegung, falls gilt: Der Endomorphismus ist halbeinfach, der Endomorphismus ist nilpotent, und es gilt . Darin wird für jedes die Abbildung folgendermaßen definiert: , welches ein Endomorphismus von ist. Die Jordan-Chevalley-Zerlegung existiert in den oben angegebenen Fällen und ist eindeutig. Zudem stimmen beide Definitionen im Fall , versehen mit der Lie-Klammer , überein. Die multiplikative Zerlegung stellt einen invertierbaren Operator als Produkt seiner kommutierenden halbeinfachen und unipotenten Anteile dar. Diese erhält man leicht aus der oben angegebenen additiven Zerlegung: . Man beachte dass invertierbar ist, denn kann als invertierbarer Endomorphismus nicht den Eigenwert 0 haben, und dass wegen der Vertauschbarkeit der Faktoren ebenfalls nilpotent und damit unipotent ist.
  • In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent parts. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is important in the study of algebraic groups. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form.
http://purl.org/voc/vrank#hasRank
is sameAs of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software