About: Injective function   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:WikicatBasicConceptsInSetTheory, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInjective_function

In mathematics, an injective function or injection or one-to-one function is a function that preserves distinctness: it never maps distinct elements of its domain to the same element of its codomain. In other words, every element of the function's codomain is the image of at most one element of its domain. The term one-to-one function must not be confused with one-to-one correspondence (aka bijective function), which uniquely maps all elements in both domain and codomain to each other, (see figures). A monomorphism is a generalization of an injective function in category theory.

AttributesValues
rdf:type
rdfs:label
  • Injective function
  • دالة تباينية
  • Injektivität
  • Función inyectiva
  • Injection (mathématiques)
  • Funzione iniettiva
  • 単射
  • Injectie (wiskunde)
  • Funkcja różnowartościowa
  • Função injectiva
  • Инъекция (математика)
  • 单射
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) الدالة التباينية (بالإنجليزية: Injective function) هي الدالة التي تبقى بها العناصر متباينة (متفاوتة): فبها لا تقترن العناصر المتباينية من مجالها بنفس العنصر من مجالها المقابل. بمعنى أن كل عنصر من مجالها المقابل مقترن بعنصر من مجالها واحد على الأقل.
  • En matemáticas, una función es inyectiva si a elementos distintos del conjunto (dominio) les corresponden elementos distintos en el conjunto (codominio) de . Es decir, cada elemento del conjunto Y tiene a lo sumo una preimagen en X, o, lo que es lo mismo, en el conjunto X no puede haber dos o más elementos que tengan la misma imagen. Así, por ejemplo, la función de números reales , dada por no es inyectiva, puesto que el valor 4 puede obtenerse como y . Pero si el dominio se restringe a los números positivos, obteniendo así una nueva función entonces sí se obtiene una función inyectiva.
  • Une application f est dite injective ou est une injection si tout élément de son ensemble d'arrivée a au plus un antécédent par f, ce qui revient à dire que deux éléments distincts de son ensemble de départ ne peuvent pas avoir la même image par f. Lorsque les ensembles de départ et d'arrivée de f sont tous les deux égaux à la droite réelle ℝ, f est injective si et seulement si son graphe intersecte toute droite horizontale en au plus un point. Si une application injective est aussi surjective, elle est dite bijective.
  • In matematica, una funzione iniettiva (detta anche funzione ingettiva oppure iniezione) è una funzione che associa a elementi distinti del dominio, elementi distinti del codominio. In altre parole, una funzione da un insieme a un insieme è iniettiva se non si può arrivare a un elemento di in due modi diversi; è però possibile che ci siano elementi di impossibili da raggiungere da un qualsiasi elemento di .
  • 集合 A を定義域、集合 B を値域とする写像 f: A → B が条件 を満たすとき、 f を単射 (injection) とよぶ。あるいは f は(写像として)単射である (injective) という。対偶をとれば、f が単射である条件は とも表せる。
  • In de wiskunde is een injectie een afbeelding, waarbij geen twee (verschillende) elementen hetzelfde beeld hebben, dus anders gezegd elk beeld een uniek origineel heeft. De term injectieve afbeelding werd geïntroduceerd door Bourbaki.
  • Funkcja różnowartościowa (iniekcja, funkcja 1-1) – funkcja, której każdy element przeciwdziedziny przyjmowany jest co najwyżej raz.
  • Uma função diz-se injectiva (ou injetora) se e somente se quaisquer que sejam e (pertencentes ao domínio da função), é diferente de implica que f() é diferente de f(): Graficamente, uma função f é injectiva se e somente se nenhuma recta horizontal intersecta o seu gráfico em mais do que um ponto. É importante notar que, neste tipo de função, o contradomínio tem uma cardinalidade sempre maior ou igual à do domínio. Além disso, podem haver mais elementos no contra-domínio que no conjunto imagem da função.
  • 在數學裡,單射函數(或稱嵌射函數、一對一函數,英文稱 injection、injective function或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在至多一個定義域內的x使得f(x) = y。 另一種說法為,f為單射,當若f(a) = f(b),則a = b(或若a ≠ b,則f(a) ≠ f(b)),其中a, b屬於定義域。
  • In mathematics, an injective function or injection or one-to-one function is a function that preserves distinctness: it never maps distinct elements of its domain to the same element of its codomain. In other words, every element of the function's codomain is the image of at most one element of its domain. The term one-to-one function must not be confused with one-to-one correspondence (aka bijective function), which uniquely maps all elements in both domain and codomain to each other, (see figures). A monomorphism is a generalization of an injective function in category theory.
  • Injektivität oder Linkseindeutigkeit ist eine Eigenschaft einer mathematischen Relation, also insbesondere auch einer Funktion (wofür man meist gleichwertig auch „Abbildung“ sagt): Eine injektive Funktion, auch als Injektion bezeichnet, ist ein Spezialfall einer linkseindeutigen Relation. Eine Funktion ist injektiv, wenn es zu jedem Element der Zielmenge höchstens ein (also eventuell gar kein) Element der Ausgangs- oder Definitionsmenge gibt, das darauf zielt, wenn also nie zwei verschiedene Elemente der Definitionsmenge auf dasselbe Element der Zielmenge abgebildet werden: Die Bildmenge auftritt. und
  • Инъекция в математике — отображение множества в множество (), при котором разные элементы множества переводятся в разные элементы множества , то есть, если два образа при отображении совпадают, то совпадают и прообразы: . Инъекцию также называют вложением или одно-однозначным отображением (в отличие от биекции, которая взаимно-однозначна). В отличие от сюръекции, про которую говорят, что она отображает одно множество на другое, об инъекции аналогичная фраза формулируется как отображение в . Инъекцию можно также определить как отображение, для которого существует левое обратное, то есть, , при котором . *
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of Apr 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software