About: Indeterminate (variable)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPolynomials, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FIndeterminate_%28variable%29

In mathematics, and particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else but itself and is used as a placeholder in objects such as polynomials and formal power series. In particular it does not designate a constant or a parameter of the problem, it is not an unknown that could be solved for, and it is not a variable designating a function argument or being summed or integrated over; it is not any type of bound variable.

AttributesValues
rdf:type
rdfs:label
  • Indeterminate (variable)
  • Unbestimmte
  • Indéterminée
  • 不定元
rdfs:comment
  • In mathematics, and particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else but itself and is used as a placeholder in objects such as polynomials and formal power series. In particular it does not designate a constant or a parameter of the problem, it is not an unknown that could be solved for, and it is not a variable designating a function argument or being summed or integrated over; it is not any type of bound variable.
  • 不定元 (indeterminate) は多項式や形式的冪級数に現れる記号であり、しばしば変数と呼ばれる。正式には、不定元は変数ではなく、多項式環や形式的冪級数環の定数である。しかしながら、多項式や形式的級数とそれらの定義する関数との間の強い関係のために、多くの著者は不定元を変数の特別な種類と考える。 例えば、二元体 F2 において多項式 X2 + X を考えると、これは 0 ではないが、この多項式の表す多項式関数は 0 である。
  • Der Begriff Unbestimmte (engl. indeterminate) wird in der Mathematik und dort insbesondere in der abstrakten Algebra für eine freie Erzeugende eines Polynomrings oder eines formalen Potenzreihenrings verwendet. Man notiert sie vorzugsweise als Großbuchstaben, bspw. oder auch Unabhängig von einem erforderlichen (unitären) Grundring in dem sich die Koeffizienten der Polynome oder Potenzreihen befinden, erzeugen die Unbestimmten ein freies Monoid (Halbgruppe mit Eins), das stets multiplikativ geschrieben und meist kommutativ gebraucht wird. Aber auch wenn Inverse von Elementen dazu kommen, so dass
  • En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Cet article traite uniquement le cas d'une indéterminée ; le cas général est abordé dans l'article Polynôme en plusieurs indéterminées.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • Der Begriff Unbestimmte (engl. indeterminate) wird in der Mathematik und dort insbesondere in der abstrakten Algebra für eine freie Erzeugende eines Polynomrings oder eines formalen Potenzreihenrings verwendet. Man notiert sie vorzugsweise als Großbuchstaben, bspw. oder auch Unabhängig von einem erforderlichen (unitären) Grundring in dem sich die Koeffizienten der Polynome oder Potenzreihen befinden, erzeugen die Unbestimmten ein freies Monoid (Halbgruppe mit Eins), das stets multiplikativ geschrieben und meist kommutativ gebraucht wird. Aber auch wenn Inverse von Elementen dazu kommen, so dass eine (freie, kommutative oder nicht kommutative) Gruppe ist, spricht man von Unbestimmten. So betrachtet ist eine Unbestimmte nicht mehr als ein Symbol , das (direkt oder auch in seiner inversen Form ) mit anderen solchen zu Symbolfolgen zusammengestellt wird. In den genannten Anwendungen Polynom und Potenzreihe „markiert“ eine solche Folge von Symbolen (ein „Wort“) einen Koeffizienten aus dem Grundring . Koeffizientenvergleich und Rechenregeln (wie die komponentenweise Addition) beziehen sich auf diese Markierung. Eine Unbestimmte kann niemals Nullstelle eines Polynoms sein und entspricht in dieser Hinsicht einer Transzendenten. Der Polynomring in der Unbestimmten über wird mit und der Ring der formalen Potenzreihen mit bezeichnet.
  • In mathematics, and particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else but itself and is used as a placeholder in objects such as polynomials and formal power series. In particular it does not designate a constant or a parameter of the problem, it is not an unknown that could be solved for, and it is not a variable designating a function argument or being summed or integrated over; it is not any type of bound variable.
  • En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Par exemple, sur tout anneau intègre, le corps des fractions rationnelles, défini à l'aide de l'indéterminée X, diffère de la structure équivalente des fonctions rationnelles de la variable x. Ainsi, la fraction rationnelle X/X est exactement égale à 1, tandis que la fonction rationnelle x/x n'est pas définie en 0. Le concept d'indéterminée permet aussi de définir de nouvelles structures algébriques, comme des extensions finies de corps en théorie de Galois. Un exemple est donné dans l'article Corps fini. Les polynômes formels fournissent des ensembles utiles pour la résolution d'équations diophantiennes, un exemple est donné dans l'article Démonstrations du dernier théorème de Fermat. Un exemple d'usage de l'indéterminée pour définir un corps à l'aide de fractions rationnelles est donné dans l'article Corps parfait. Cet article traite uniquement le cas d'une indéterminée ; le cas général est abordé dans l'article Polynôme en plusieurs indéterminées.
  • 不定元 (indeterminate) は多項式や形式的冪級数に現れる記号であり、しばしば変数と呼ばれる。正式には、不定元は変数ではなく、多項式環や形式的冪級数環の定数である。しかしながら、多項式や形式的級数とそれらの定義する関数との間の強い関係のために、多くの著者は不定元を変数の特別な種類と考える。 例えば、二元体 F2 において多項式 X2 + X を考えると、これは 0 ではないが、この多項式の表す多項式関数は 0 である。
id
title
  • indeterminate
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software