About: Indefinite orthogonal group   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:WikicatLieGroups, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FIndefinite_orthogonal_group

In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. The dimension of the group is n(n − 1)/2. The group O(p, q) is defined for vector spaces over the reals. For complex spaces, all groups O(p, q; C) are isomorphic to the usual orthogonal group O(p + q; C), since the transform changes the signature of a form.

AttributesValues
rdf:type
rdfs:label
  • Indefinite orthogonal group
  • Gruppo ortogonale indefinito
  • 广义正交群
rdfs:comment
  • 数学上,广义正交群或称伪正交群、不定正交群O(p,q)是所有保持n=p+q维实向量空间上的符号为 (p,q)的非退化对称双线性形式的线性变换组成的李群。这个群的维数是n(n−1)/2。 广义特殊正交群SO(p,q)是O(p,q)中所有行列式为1的元素构成的子群。 度量的符号(p、q分别为正负特征值的个数)在同构的意义下决定该群;交换p和q相当于度量改变惯性指数,所以给出同样的群。如果p或q等于0,那么同构于普通正交群O(n)。我们假设下文中p和q均是正整数。 群O(p,q)定义在实向量空间上。对于複空间,所有群O(p,q; C)都同构于通常正交群O(p + q; C),因为複共轭变换 能改变二次型的惯性指数。
  • In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. The dimension of the group is n(n − 1)/2. The group O(p, q) is defined for vector spaces over the reals. For complex spaces, all groups O(p, q; C) are isomorphic to the usual orthogonal group O(p + q; C), since the transform changes the signature of a form.
  • In matematica, il gruppo ortogonale indefinito ovvero gruppo pseudo-ortogonale, denotato con O(p, q) , è il gruppo di Lie di tutti gli endomorfismi lineari di uno spazio vettoriale reale n-dimensionale che lasciano invariata una forma bilineare simmetrica di segnatura (p, q), dove n = p + q. La dimensione di questo gruppo è n(n − 1)/2.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. The dimension of the group is n(n − 1)/2. The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1. Unlike in the definite case, SO(p, q) is not connected – it has 2 components – and there are two additional finite index subgroups, namely the connected SO+(p, q) and O+(p, q), which has 2 components – see for definition and discussion. The signature of the form determines the group up to isomorphism; interchanging p with q amounts to replacing the metric by its negative, and so gives the same group. If either p or q equals zero, then the group is isomorphic to the ordinary orthogonal group O(n). We assume in what follows that both p and q are positive. The group O(p, q) is defined for vector spaces over the reals. For complex spaces, all groups O(p, q; C) are isomorphic to the usual orthogonal group O(p + q; C), since the transform changes the signature of a form. In even dimension, the middle group O(n, n) is known as the , and is of particular interest. In odd dimension, split form is the almost-middle group O(n, n + 1).
  • In matematica, il gruppo ortogonale indefinito ovvero gruppo pseudo-ortogonale, denotato con O(p, q) , è il gruppo di Lie di tutti gli endomorfismi lineari di uno spazio vettoriale reale n-dimensionale che lasciano invariata una forma bilineare simmetrica di segnatura (p, q), dove n = p + q. La dimensione di questo gruppo è n(n − 1)/2. Il gruppo ortogonale indefinito speciale, SO(p, q) , è il sottogruppo di O(p, q) formato da tutti gli endomorfismi lineari con determinante uguale a 1. Diversamente del caso definito, il gruppo di Lie SO(p, q) non è connesso – infatti ha 2 componenti – ed inoltre contiene due sottogruppi di indice finito, cioè il sottogruppo connesso SO+(p, q) e il sottogruppo a 2 componenti O+(p, q).
  • 数学上,广义正交群或称伪正交群、不定正交群O(p,q)是所有保持n=p+q维实向量空间上的符号为 (p,q)的非退化对称双线性形式的线性变换组成的李群。这个群的维数是n(n−1)/2。 广义特殊正交群SO(p,q)是O(p,q)中所有行列式为1的元素构成的子群。 度量的符号(p、q分别为正负特征值的个数)在同构的意义下决定该群;交换p和q相当于度量改变惯性指数,所以给出同样的群。如果p或q等于0,那么同构于普通正交群O(n)。我们假设下文中p和q均是正整数。 群O(p,q)定义在实向量空间上。对于複空间,所有群O(p,q; C)都同构于通常正交群O(p + q; C),因为複共轭变换 能改变二次型的惯性指数。
author
id
  • O/o070300
title
  • Orthogonal group
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software