About: Hyperplane     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPropertiesOfTopologicalSpaces, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHyperplane

In geometry a hyperplane is a subspace of one dimension less than its ambient space. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined.

AttributesValues
rdf:type
rdfs:label
  • Hyperplane
  • مستو فائق
  • Hyperebene
  • Hiperplano
  • Hyperplan
  • Iperpiano
  • 超平面
  • Hiperpłaszczyzna
  • Hypervlak
  • Hiperplano
  • Гиперплоскость
  • 超平面
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) المستوي الفائق هو مبدأ في الهندسة الرياضية ويعتبر تعميم لأبعاد أعلى من مفهوم المستقيم في الهندسة الإقليدية المستوية والمستوي في الفضاء الثلاثي الأبعاد. أشهر أنواع المستويات الفائقة هي المستويات الأفينية الفائقة، والمستويات الخطية الفائقة، وأقل شهرة هو المستوي الإسقاطي الفائق.
  • En geometría, un hiperplano es una extensión del concepto de plano. En un espacio unidimensional (como una recta), un hiperplano es un punto: divide una línea en dos líneas. En un espacio bidimensional (como el plano xy), un hiperplano es una recta: divide el plano en dos mitades. En un espacio tridimensional, un hiperplano es un plano corriente: divide el espacio en dos mitades. Este concepto también puede ser aplicado a espacios de cuatro dimensiones y más, donde estos objetos divisores se llaman simplemente hiperplanos, ya que la finalidad de esta nomenclatura es la de relacionar la geometría con el plano.
  • En mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel, etc.
  • La nozione di iperpiano è nata in geometria come generalizzazione della nozione di piano e successivamente ha avuto una riformulazione nella combinatoria, più precisamente nella teoria delle matroidi, volta a cogliere solo alcuni aspetti insiemistici della geometrica. Si tratta essenzialmente di un sottospazio di dimensione inferiore di uno (n − 1) rispetto allo spazio in cui è contenuto (n). Se lo spazio ha dimensione 3, i suoi iperpiani sono i piani.
  • 初等幾何学における超平面(ちょうへいめん、英: hyperplane)の概念は、二次元の平面をそれ以外の次元へ一般化するものである。n-次元空間における超平面とは、次元が n − 1 の平坦な部分空間をいう。その特質として、一つの超平面は全体空間を二つの半空間に分割する。
  • Hiperpłaszczyzna (dawn. zbiór liniowy) w przestrzeni euklidesowej n-wymiarowej to zbiór rozwiązań równania postaci: gdzie nie wszystkie współczynniki są zerami. Hiperpłaszczyzna ma wymiar o 1 mniejszy niż przestrzeń, w której się zawiera. Na przykład w przypadku przestrzeni 2-wymiarowej jest to prosta, 3-wymiarowej - płaszczyzna. Innymi słowy hiperpłaszczyzna jest podprzestrzenią afiniczną wymiaru , zanurzoną w przestrzeni . Uogólnieniem hiperpłaszczyzny jest hiperpowierzchnia.
  • Een hypervlak is een begrip uit de meetkunde (meer specifiek de n-dimensionale meetkunde). Het is een veralgemening van het concept van een vlak in een verschillend aantal dimensies. Analoog met een vlak dat een tweedimensionale deelruimte in een driedimensionale ruimte definieert, definieert een hypervlak een k-dimensionale deelruimte binnen aan n-dimensionale ruimte, waarbij k < n. Een lijn is bijvoorbeeld, is een eendimensionaal hypervlak in een ruimte met een willekeurig aantal dimensies. Hoog-dimensionale hypervlakken zijn moeilijk te visualiseren, maar ze hebben veel wiskundige eigenschappen gemeen met lijnen en vlakken.
  • Гиперпло́скость — подпространство коразмерности 1в векторном, аффинном пространствеили проективном пространстве;то есть подпространство с размерностью, на единицу меньшей, чем объемлющее пространство. Например, для двумерного пространства гиперплоскость есть прямая (отражаемая уравнением ), для трёхмерного — плоскость, для четырёхмерного — трёхмерное пространство («трёхмерная плоскость») и т. д.
  • 在數學中,超平面是 維歐氏空間中餘維度等於一的線性子空間。這是平面中的直線、空間中的平面之推廣。 設 為域(為初等起見,可考慮 )。n 維空間 中的超平面是由方程 定義的子集,其中 是不全為零的常數。 在線性代數的脈絡下, -矢量空間 中的超平面是指形如 的子空間,其中 是任一非零的線性映射。 在射影幾何中,同樣可定義射影空間 中的超平面。在齊次坐標 下,超平面可由以下方程定義 其中 是不全為零的常數。
  • In geometry a hyperplane is a subspace of one dimension less than its ambient space. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined.
  • Eine Hyperebene ist in der Mathematik eine Verallgemeinerung des Konzepts der Ebene vom Anschauungsraum auf Räume beliebiger Dimension. Ähnlich wie eine Ebene im dreidimensionalen Raum durch einen Stützvektor und zwei Richtungsvektoren beschrieben werden kann, wird eine Hyperebene im -dimensionalen Raum durch einen Stützvektor und Richtungsvektoren dargestellt. Im -dimensionalen Koordinatenraum ist eine Hyperebene die Lösungsmenge einer linearen Gleichung mit Unbekannten. Hyperebenen spielen daher eine wichtige Rolle bei der Lösungsstruktur linearer Gleichungs- und Ungleichungssysteme.
  • Um hiperplano é um conceito em geometria. Ele é a generalização do plano em diferentes números de dimensões. Na geometria, um hiperplano pode ser um espaço vetorial, transformação afim ou o sub-espaço de dimensão n-1. Em particular, num espaço tridimensional um hiperplano é um plano habitual. Num espaço bidimensional, um hiperplano é uma reta. Num espaço unidimensional, um hiperplano é um ponto. Denomina-se hiperplano em (por exemplo, ) um conjunto de elementos tais que , sendo que p é o vetor normal de H, é não-nulo e também percence a , e b pertence ao conjunto dos números reais.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software