About: generating function     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatElementarySpecialFunctions, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGenerating_function

In mathematics, generating function is used to describe an infinite sequence of numbers (an) by treating them as the coefficients of a series expansion. The sum of this infinite series is the generating function. Unlike an ordinary series, this formal series is allowed to diverge, meaning that the generating function is not always a true function and the "variable" is actually an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal series in more than one indeterminate, to encode information about arrays of numbers indexed by several natural numbers.

AttributesValues
rdf:type
rdfs:label
  • Generating function
  • دالة مولدة
  • Erzeugende Funktion
  • Función generadora
  • Série génératrice
  • Funzione generatrice
  • 母関数
  • Voortbrengende functie
  • Funkcja tworząca
  • Метод производящих функций
  • Função geradora
  • 母函数
rdfs:comment
  • في الرياضيات، دالة مولدة (بالإنجليزية: Generating function) هي متسلسلة قوى شكلية بمتغير واحد معاملاتها تحتوي على تمثيل ضمني لمتتالية من الأعداد an .
  • In verschiedenen Teilgebieten der Mathematik versteht man unter der erzeugenden Funktion einer Folge die formale Potenzreihe . Zum Beispiel ist die erzeugende Funktion der konstanten Folge die geometrische Reihe Die Reihe konvergiert für alle und besitzt den Wert . Wegen der Verwendung formaler Potenzreihen spielen allerdings im Allgemeinen Konvergenzfragen keine Rolle – ist lediglich ein Symbol. Diese explizitere Darstellung als Potenzreihe ermöglicht oft Rückschlüsse auf die Folge.
  • Funkcja tworząca dla ciągu jest zdefiniowana jako . Ciąg może być w szczególnym przypadku ciągiem liczbowym (wartości są liczbami naturalnymi, jak to się dzieje, gdy odpowiada on zliczaniu obiektów kombinatorycznych, rzeczywistymi, zespolonymi) jednak w ogólności jego wartości mogą być inne (np. funkcje). Tymczasem jednomiany mogą być rozpatrywane jako wyrazy pierścienia szeregu formalnego (gdy interesują nas wyłącznie algebraiczne właściwości funkcji tworzącej) albo liczby (rzeczywiste lub zespolone).
  • De voortbrengende functie van een rij an is de formele machtreeks (waarbij niet op convergentie wordt gelet) Een eenvoudig voorbeeld is de voortbrengende functie van de constante rij 1, 1, 1, 1, ..., die luidt die alleen tot convergentie leidt voor |x|<1. Voortbrengende functies zijn een hulpmiddel voor het oplossen van recursies en differentievergelijkingen.
  • Метод производящих функций — применяемый в комбинаторике метод основанный на сходимости рядов. Производящие функции дают возможность просто описывать многие сложные последовательности в комбинаторике, а иногда помогают найти для них явные формулы.
  • 在数学中,某个序列 的母函数(又称生成函数,英语:Generating function)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法。 母函数可分为很多种,包括普通母函数、指数母函数、L级数、贝尔级数和狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。 母函数的表示一般使用解析形式,即写成关于某个形式变量x的形式幂级数。对幂级数的收敛半径中的某一点,可以求母函数在这一点的级数和。但无论如何,由于母函数是形式幂级数的一种,其级数和不一定对每个x的值都存在。 母函数方法不仅在概率论的计算中有重要地位,而且已成为组合数学中一种重要方法。此外,母函数在有限差分计算、特殊函数论等数学领域中都有着广泛的应用。 注意母函数本身并不是一个从某个定义域射到某个上域的函数,名字中的“函数”只是出于历史原因而保留。
  • In mathematics, generating function is used to describe an infinite sequence of numbers (an) by treating them as the coefficients of a series expansion. The sum of this infinite series is the generating function. Unlike an ordinary series, this formal series is allowed to diverge, meaning that the generating function is not always a true function and the "variable" is actually an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal series in more than one indeterminate, to encode information about arrays of numbers indexed by several natural numbers.
  • En matemáticas, una función generadora o función generatriz es una serie formal de potencias cuyos coeficientes codifican información sobre una sucesión an cuyo índice corre sobre los enteros no negativos. Las funciones generadoras son expresiones cerradas en un argumento formal x. A veces, una función generadora se «evalúa» en un valor específico x=a pero hay que tener en cuenta que las funciones generadoras son series formales de potencias, por lo que no se considera ni se analiza el problema de la convergencia en todos los valores de x. Herbert Wilf
  • In matematica una funzione generatrice è una serie formale di potenze i cui coefficienti costituiscono i componenti an di una successione indicizzata dai numeri naturali; spesso questa successione viene rappresentata efficacemente dalla funzione generatrice, specialmente quando per questa si trova qualche espressione sufficientemente maneggevole e significativa.
  • En mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite an de nombres (ou plus généralement de polynômes, etc.) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
  • 数学において、母関数(ぼかんすう、英: generating function; 生成関数)は、(自然数で添字付けられた)数列 {an} に関する情報を内包した係数を持つ、形式冪級数である。母関数は、一般線型回帰問題の解決のためにド・モアブルによって1730年に初めて用いられた。複数の自然数で添字付けられる数の配列(多重数列)の情報を取り込んだ多変数冪級数を同様に考えることもできる。 母関数には、通常型母関数 (ordinary generating function)、指数型母関数 (exponential generating function)、ランベルト級数 (Lambert series)、ベル級数 (Bell series)、ディリクレ級数 (Dirichlet series) など様々なものがある。これらについては定義と例を後述する。原理的にはあらゆる列についてそれぞれの種類の母関数が存在する(ただし、ランベルト級数とディリクレ型は添字を 1 から始めることが必要)が、扱い易さについてはそれぞれの種類で相当異なるかもしれない。どの母関数が最も有効かは、その列の性質と解くべき問題の詳細に依存する。 慣例的に母「関数」と呼ばれてはいるが、始域から終域への写像という関数の厳密な意味に照らして言えば母関数は関数ではなく、今日的には生成級数(母級数)と呼ぶこともしばしばである。
  • Em matemática, uma função geradora ou função geratriz é uma série formal cujos coeficientes codificam informações sobre uma sucessão an cujo índice percorre os números naturais. Existem vários tipos de funções geradoras: funções geradoras ordinárias, funções geradoras exponenciais, série de Lambert, série de Bell, série de Fourier, série de Eisenstein e a série de Dirichlet; das quais existem muitos exemplos. Cada sucessão tem uma função geradora de certo tipo. Este tipo de função geradora que é apropiada num contexto dado depende da natureza da sucessão e dos detalhes do problema analisado.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software