About: Gegenbauer polynomials     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatOrthogonalPolynomials, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGegenbauer_polynomials

In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)n(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.

AttributesValues
rdf:type
rdfs:label
  • Gegenbauer-Polynom
  • Gegenbauer polynomials
  • Polynôme de Gegenbauer
  • Polinomi di Gegenbauer
  • ゲーゲンバウアー多項式
  • Многочлены Гегенбауэра
  • 盖根鲍尔多项式
rdfs:comment
  • Die Gegenbauer-Polynome, auch ultrasphärische Polynome genannt, sind eine Menge orthogonaler Polynome auf dem Intervall mit der Gewichtungsfunktion (1−x2)α−1/2, mit α > −1/2. Sie sind benannt nach dem Mathematiker Leopold Gegenbauer und bilden die Lösung der Gegenbauer-Differentialgleichung. Die Polynome haben die Form für α≠0, andernfalls Sie lassen sich auch durch eine Hypergeometrische Funktion 2F1 darstellen: Der Wert für z=1 ist Die ersten Polynome haben die Gestalt:
  • In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)n(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.
  • En mathématiques, les polynômes de Gegenbauer ou polynômes ultrasphériques sont une classe de polynômes orthogonaux. Ils sont nommés ainsi en l'honneur de Leopold Gegenbauer (1849 - 1903). Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie : où est la factorielle décroissante. Article détaillé : polynômes orthogonaux. (Voir Abramowitz & Stegun p561) * Portail des mathématiques Portail des mathématiques
  • In matematica i polinomi di Gegenbauer, chiamati anche polinomi ultrasferici, costituiscono una famiglia di successioni di polinomi ortogonali. Essi traggono il loro nome dal matematico austriaco Leopold Gegenbauer (1849-1903). Essi si possono definire come particolari serie ipergeometriche in casi nei quali tali serie si riducono a somme finite: dove denota il fattoriale crescente. (Vedi Abramowitz & Stegun p. 561)
  • 数学において、ゲーゲンバウアー多項式(ケーゲンバウアーたこうしき、英: Gegenbauer polynomials)または超球多項式 (ultraspherical polynomials) とは、レオポルド・ベルンハルト・ゲーゲンバウアー (1849–1903) にちなんで命名された、区間 上で定義される重み関数 の直交多項式をいう。ゲーゲンバウアー多項式は、ルジャンドル多項式及びチェビシェフ多項式の一般事例であり、ヤコビ多項式の特殊事例である。
  • 盖根鲍尔多项式 又称超球多项式,是定义在区间 上、权函数为 的正交多项式。它是勒让德多项式和切比雪夫多项式的推广,又是雅可比多项式的特殊情况。它以奥地利数学家Leopold Gegenbauer命名。
  • Многочле́ны Гегенба́уэра или ультрасфери́ческие многочле́ны в математике — многочлены, ортогональные на отрезке [−1,1] с весовой функцией . Они могут быть явным образом представлены как где — гамма-функция, а обозначает целую часть числа n/2. Многочлены Гегенбауэра являются обобщением многочленов Лежандра и Чебышёва, и являются частным случаем многочленов Якоби. Также многочлены Гегенбауэра связаны с представлением специальной ортогональной группы . Они названы в честь австрийского математика Леопольда Гегенбауэра (1849—1903).
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • Die Gegenbauer-Polynome, auch ultrasphärische Polynome genannt, sind eine Menge orthogonaler Polynome auf dem Intervall mit der Gewichtungsfunktion (1−x2)α−1/2, mit α > −1/2. Sie sind benannt nach dem Mathematiker Leopold Gegenbauer und bilden die Lösung der Gegenbauer-Differentialgleichung. Die Polynome haben die Form für α≠0, andernfalls Sie lassen sich auch durch eine Hypergeometrische Funktion 2F1 darstellen: Der Wert für z=1 ist Die ersten Polynome haben die Gestalt:
  • In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)n(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.
  • En mathématiques, les polynômes de Gegenbauer ou polynômes ultrasphériques sont une classe de polynômes orthogonaux. Ils sont nommés ainsi en l'honneur de Leopold Gegenbauer (1849 - 1903). Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie : où est la factorielle décroissante. Article détaillé : polynômes orthogonaux. (Voir Abramowitz & Stegun p561) * Portail des mathématiques Portail des mathématiques
  • In matematica i polinomi di Gegenbauer, chiamati anche polinomi ultrasferici, costituiscono una famiglia di successioni di polinomi ortogonali. Essi traggono il loro nome dal matematico austriaco Leopold Gegenbauer (1849-1903). Essi si possono definire come particolari serie ipergeometriche in casi nei quali tali serie si riducono a somme finite: dove denota il fattoriale crescente. (Vedi Abramowitz & Stegun p. 561)
  • 数学において、ゲーゲンバウアー多項式(ケーゲンバウアーたこうしき、英: Gegenbauer polynomials)または超球多項式 (ultraspherical polynomials) とは、レオポルド・ベルンハルト・ゲーゲンバウアー (1849–1903) にちなんで命名された、区間 上で定義される重み関数 の直交多項式をいう。ゲーゲンバウアー多項式は、ルジャンドル多項式及びチェビシェフ多項式の一般事例であり、ヤコビ多項式の特殊事例である。
  • 盖根鲍尔多项式 又称超球多项式,是定义在区间 上、权函数为 的正交多项式。它是勒让德多项式和切比雪夫多项式的推广,又是雅可比多项式的特殊情况。它以奥地利数学家Leopold Gegenbauer命名。
  • Многочле́ны Гегенба́уэра или ультрасфери́ческие многочле́ны в математике — многочлены, ортогональные на отрезке [−1,1] с весовой функцией . Они могут быть явным образом представлены как где — гамма-функция, а обозначает целую часть числа n/2. Многочлены Гегенбауэра являются обобщением многочленов Лежандра и Чебышёва, и являются частным случаем многочленов Якоби. Также многочлены Гегенбауэра связаны с представлением специальной ортогональной группы . Они названы в честь австрийского математика Леопольда Гегенбауэра (1849—1903).
b
  • n
first
  • Roderick S. C.
  • Roelof
  • Tom H.
  • René F.
  • P.K.
id
last
  • Koekoek
  • Koornwinder
  • Swarttouw
  • Wong
  • Suetin
title
  • Orthogonal Polynomials
  • Ultraspherical polynomials
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software