About: Fundamental domain   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:YagoPermanentlyLocatedEntity, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFundamental_domain

Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits.

AttributesValues
rdf:type
rdfs:label
  • Fundamental domain
  • Fundamentalbereich
  • Domaine fondamental
  • Фундаментальная область
  • 基本域
rdfs:comment
  • Ein Fundamentalbereich bezüglich einer Transformationsgruppe ist eine spezielle zusammenhängende Teilmenge eines topologischen Raumes.
  • En géométrie, un domaine fondamental pour l'action d'un groupe sur un ensemble E est une région de E dont les images par l'action du groupe forment une partition de E. C'est donc un domaine contenant exactement un point par orbite du groupe.
  • 數學上,給出一個拓撲空間和在其上作用的群,一個點在群作用下的像是這個作用的一個軌道。一個基本域是這個空間的一個子集,包含了每個軌道中恰好一點。基本域具體地用幾何表現出抽象的軌道代表集。 構造基本域的方法有很多。一般會要求基本域是連通的,又對其邊界加上一些限制,例如是光滑或是多面的。基本域在群作用下的像,就會把空間密鋪。
  • Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits.
  • Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral. The images of a chosen fundamental domain under the group action then tile the space. One general construction of fundamental domains uses Voronoi cells.
  • Ein Fundamentalbereich bezüglich einer Transformationsgruppe ist eine spezielle zusammenhängende Teilmenge eines topologischen Raumes.
  • En géométrie, un domaine fondamental pour l'action d'un groupe sur un ensemble E est une région de E dont les images par l'action du groupe forment une partition de E. C'est donc un domaine contenant exactement un point par orbite du groupe.
  • 數學上,給出一個拓撲空間和在其上作用的群,一個點在群作用下的像是這個作用的一個軌道。一個基本域是這個空間的一個子集,包含了每個軌道中恰好一點。基本域具體地用幾何表現出抽象的軌道代表集。 構造基本域的方法有很多。一般會要求基本域是連通的,又對其邊界加上一些限制,例如是光滑或是多面的。基本域在群作用下的像,就會把空間密鋪。
  • Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит. Существует множество способов выбора фундаментальной области. Обычно требуется, чтобы фундаментальная область была связным подмножеством с некоторыми ограничениями на границы, например, чтобы они были гладкими или многогранными. Образы выбранной фундаментальной области при действии группы образуют мозаику в пространстве. Одно из основных построений фундаментальных областей опирается на диаграммы Вороного.
title
  • Fundamental domain
urlname
  • FundamentalDomain
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software