About: Fibonacci polynomials     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPolynomials, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFibonacci_polynomials

In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.

AttributesValues
rdf:type
rdfs:label
  • Fibonacci polynomials
  • Polinomi di Fibonacci
  • Polynôme de Fibonacci
  • フィボナッチ多項式
rdfs:comment
  • In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.
  • In matematica, i polinomi di Fibonacci sono una generalizzazione dei numeri di Fibonacci. Questi polinomi sono definiti ricorsivamente come: I primi polinomi di Fibonacci sono:
  • En mathématiques les polynômes de Fibonacci nommés ainsi en l'honneur du mathématicien italien Leonardo Fibonacci, sont une suite de polynômes généralisant les nombres de Fibonacci, d'une manière telle que Fn(1) soit égal au n-ième nombre de la suite de Fibonacci.
  • 数学におけるフィボナッチ多項式(フィボナッチたこうしき、英: Fibonacci polynomials)とは、フィボナッチ数の一般化として見られるある多項式列のことを言う。同様にリュカ数の一般化として得られる多項式列のことはリュカ数(Lucas polynomials)と言う。
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
name
  • Triangle of coefficients of polynomials defined by Binet form...
  • Triangle of coefficients of Fibonacci polynomials.
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.
  • In matematica, i polinomi di Fibonacci sono una generalizzazione dei numeri di Fibonacci. Questi polinomi sono definiti ricorsivamente come: I primi polinomi di Fibonacci sono:
  • En mathématiques les polynômes de Fibonacci nommés ainsi en l'honneur du mathématicien italien Leonardo Fibonacci, sont une suite de polynômes généralisant les nombres de Fibonacci, d'une manière telle que Fn(1) soit égal au n-ième nombre de la suite de Fibonacci.
  • 数学におけるフィボナッチ多項式(フィボナッチたこうしき、英: Fibonacci polynomials)とは、フィボナッチ数の一般化として見られるある多項式列のことを言う。同様にリュカ数の一般化として得られる多項式列のことはリュカ数(Lucas polynomials)と言う。
first
  • Andreas N.
id
  • Fibonacci_polynomials&oldid=14185
  • Lucas_polynomials&oldid=17297
last
  • Philippou
sequencenumber
  • A011973
  • A162515
title
  • Lucas Polynomial
  • Lucas polynomials
  • Fibonacci polynomials
urlname
  • LucasPolynomial
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software