About: Euler–Maclaurin formula     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the Euler–Maclaurin formula provides a powerful connection between integrals (see calculus) and sums. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.

AttributesValues
rdf:type
rdfs:label
  • Euler–Maclaurin formula
  • صيغة أويلر-ماكلورين
  • Euler-Maclaurin-Formel
  • Fórmula de Euler-Maclaurin
  • Formule d'Euler-Maclaurin
  • Formula di Eulero-Maclaurin
  • オイラーの和公式
  • Formule van Euler-Maclaurin
  • Wzór Eulera-Maclaurina
  • Формула Эйлера — Маклорена
  • 欧拉-麦克劳林求和公式
rdfs:comment
  • في الرياضيات, تعطي صيغة أويلر-ماكلورين ارتباطا وثيقا بين التكامل (انظر التفاضل والتكامل) والمجموع. يمكن استخدام الصيغة لتقريب التكاملات بعدد محدود من المجاميع, أو تقييم مجاميع محدودة وسلاسل غير منتهية باستعمال التكاملات والية التفاضل على نحو مضاد.على سبيل المثال, العديد من المنشورات المقاربة يتم اشتقاقها من هذه الصيغة وصيغة فاولابر لمجموع القوى هو نتيجة مباشرة لذلك. اكتشفت الصيغة من قبل ليونارد أويلر وكولين ماكلورين كل على حده في حوالى 1735 (وعممت فيما بعد تحت صيغة داربوكس). احتاج إليها أويلر ليحسب متسلسلة لانهائية بطيئة التقارب بينما استخدمها ماكلورين لحساب التكاملات.
  • Die Euler-Maclaurin-Formel oder Eulersche Summenformel (nach Leonhard Euler und Colin Maclaurin) ist eine mathematische Formel zur Berechnung einer Summe von Funktionswerten durch die Werte der Ableitungen dieser Funktion an den Summationsgrenzen – so ist Euler auf sie gestoßen. In einer abgewandelten Form ermöglicht sie die numerische Approximation eines bestimmten Integrals über einzelne Werte des Integranden und seiner Ableitungen – so hat sie Maclaurin hergeleitet.
  • En matemáticas, la fórmula de Euler-Maclaurin relaciona a integrales con series. Esta fórmula puede ser usada para aproximar integrales por sumas finitas o, de forma inversa, para evaluar series (finitas o infinitas) resolviendo integrales. La fórmula fue descubierta independientemente por Leonhard Euler y Colin Maclaurin en 1735. Euler usó esta fórmula para calcular valores de series infinitas con convergencia lenta y Maclaurin la utilizó para calcular integrales.
  • En mathématiques, la formule d'Euler-Maclaurin (appelée parfois formule sommatoire d'Euler) est une relation entre sommes discrètes et intégrales. Elle fut découverte indépendamment, aux alentours de 1735, par le mathématicien suisse Leonhard Euler (pour accélérer le calcul de limites de séries lentement convergentes) et par l'écossais Colin Maclaurin (pour calculer des valeurs approchées d'intégrales).
  • 数学において、オイラーの和公式(オイラー・マクローリンの公式)は級数の和を与える公式である。この公式は収束の遅い無限級数の和を求めるときに便利であるが、 が多項式であるような場合を除き、 とすればベルヌーイ数が急速に大きくなって発散する。従って、漸近展開のように発散する前の適当なところで打ち切らなければならない。この公式は台形公式による数値積分の誤差を示すものとも考えられる。 但し、 はベルヌーイ数、 はベルヌーイ多項式である。 なお、 は導関数、 は床関数を表す。
  • 欧拉-麦克劳林求和公式在1735年由莱昂哈德·欧拉与科林·麦克劳林分别独立发现,该公式提供了一个联系积分与求和的方法,由此可以导出一些渐进展开式。
  • Формула суммирования Эйлера — Маклорена — формула, позволяющая выражать дискретные суммы значений функции через интегралы от функции. В частности, многие асимптотические разложения сумм получаются именно через эту формулу. Формула была найдена независимо Леонардом Эйлером в 1732 году и Колином Маклореном примерно в 1735 году (и позже была обобщена до формулы Дарбурусск.). Эйлер получил эту формулу, когда ему потребовалось вычислить медленно сходящийся ряд, а Маклорен использовал её для вычисления интегралов.
  • In mathematics, the Euler–Maclaurin formula provides a powerful connection between integrals (see calculus) and sums. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.
  • Nel calcolo infinitesimale la formula di Eulero-Maclaurin fornisce un collegamento di grande utilità tra il calcolo degli integrali (vedi calcolo infinitesimale) e il calcolo di somme e serie.Essa si può usare per approssimare integrali mediante somme finite e viceversa per valutare somme finite e somme di serie a partire da valori di integrali definiti ottenuti analiticamente o mediante approssimazioni ottenute usando il computer. In particolare da questa formula si deducono molti sviluppi asintotici e la formula di Falhauber per la somma di potenze di interi è una sua immediata conseguenza.
  • De formule van Euler-Maclaurin is in de wiskunde een afschatting van het verschil tussen een integraal en een som. Onafhankelijk van elkaar ontdekten Leonhard Euler en Colin Maclaurin dit resultaat rond 1735. De integraal I van een functie f over het interval (0,n), met n een natuurlijk getal, kan benaderd worden door de som: De formule van Euler-Maclaurin geeft een uitdrukking voor het verschil tussen de som en de integraal. Voor een willekeurig natuurlijk getal m geldt: waarin de getallen Bn de Bernoulligetallen zijn en R een restterm is die voor geschikte waarden van m klein is.
  • Wzór Eulera-Maclaurina – wzór dający silne połączenie między całkami (zobacz rachunek różniczkowy i całkowy) a sumami. Może być użyty do przybliżania całek przez skończone sumy lub odwrotnie, do szacowania skończonych sum i nieskończonych szeregów przez całki. Wzór został odkryty niezależnie przez Leonharda Eulera i Colina Maclaurina około 1735. Euler potrzebował go do obliczenia wolno zbiegających nieskończonych szeregów, podczas gdy Maclaurin wykorzystał go do przybliżonego obliczania całek. może być przybliżona przez sumę (zob. wzór trapezów) . Dla każdej liczby naturalnej p mamy
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software