About: Euclidean geometry     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:YagoPermanentlyLocatedEntity, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FEuclidean_geometry

Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometr

AttributesValues
rdf:type
rdfs:label
  • Euclidean geometry
  • هندسة إقليدية
  • Euklidische Geometrie
  • Geometría euclidiana
  • Géométrie euclidienne
  • Geometria euclidea
  • ユークリッド幾何学
  • Euclidische meetkunde
  • Geometria euklidesowa
  • Geometria euclidiana
  • Евклидова геометрия
  • 欧几里得几何
rdfs:comment
  • Die euklidische Geometrie ist zunächst die uns vertraute, anschauliche Geometrie des Zwei- oder Dreidimensionalen. Der Begriff hat jedoch sehr verschiedene Aspekte und lässt Verallgemeinerungen zu. Benannt ist dieses mathematische Teilgebiet der Geometrie nach dem griechischen Mathematiker Euklid von Alexandria.
  • ユークリッド幾何学(ユークリッドきかがく、英: Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。
  • Na matemática, geometria euclidiana é a geometria, em duas e três dimensões, baseada nos postulados de Euclides de Alexandria.
  • Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
  • 欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F. Gauss, 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利人波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即「非歐幾何」(non-Euclidean geometry)。
  • Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometr
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) تدرس الهندسة الإقليدية (بالإنجليزية: Euclidean geometry) الأشكال وتخضع لمجموعة من المسلمات وضعها إقليدس في كتابه العناصر وهي الهندسة التي تدرس في المدارس والثانويات. لا تستعمل الهندسة الإقليدية سوى المسطرة والفرجار لإنشاء الأشكال وهذا أدى إلى ظهور مسائل هندسية لم يتم حلها إلا في القرن 19 وهذه المسائل هي: 1. * تقسيم زاوية إلى ثلاثة أقسام متساوية. 2. * إنشاء مكعب حجمه ضعف حجم مكعب معلوم. 3. * إنشاء مربع مساحته تساوي مساحة دائرة معينة.
  • La geometría euclidiana, euclídea o parabólica es el estudio de las propiedades geométricas de los espacios euclídeos. Es aquella que estudia las propiedades geométricas del plano afín euclídeo real y del espacio afín euclídeo tridimensional real mediante el método sintético, introduciendo los cinco postulados de Euclides. En ocasiones los matemáticos usan las expresiones geometría euclídea o geometría euclidiana para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia son sinónimos de geometría plana o de geometría clásica.
  • La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme. Les conceptions géométriques connaissent, depuis les travaux d'Euclide, des évolutions suivant trois axes principaux :
  • La geometria euclidea è un sistema matematico attribuito al matematico alessandrino Euclide, che la descrisse nei suoi Elementi. La sua geometria consiste nell'assunzione di cinque semplici e intuitivi concetti, detti assiomi o postulati, e nella derivazione, da detti assiomi, di altre proposizioni (teoremi) che non abbiano alcuna contraddizione con essi. Questa organizzazione della geometria permise l'introduzione della retta, del piano, della lunghezza e dell'area. Sebbene molte delle conclusioni di Euclide erano già conosciute dai matematici, egli mostrò come queste potessero essere organizzate in una maniera deduttiva e con un sistema logico. Gli Elementi di Euclide iniziano con un'analisi della geometria piana, attualmente insegnata nelle scuole secondarie ed utilizzata come primo app
  • De euclidische meetkunde is een wiskundig systeem dat wordt toegeschreven aan de Griekse wiskundige Euclides van Alexandrië. Zijn werk, de Elementen, is de vroegst bekende systematische bespreking van de meetkunde. De Elementen is een van de meest invloedrijke boeken uit de geschiedenis, niet alleen om de wiskundige inhoud, maar vooral vanwege de gehanteerde methode. Deze methode bestaat eruit om uitgaande van een kleine verzameling van intuïtief aansprekende axioma's, vervolgens vele andere proposities, lemma's en stellingen te bewijzen. Hoewel veel van Euclides' resultaten reeds eerder door vroegere Griekse wiskundigen waren geformuleerd, was Euclides de eerste die liet zien hoe deze proposities in elkaar grijpen in een alomvattend deductief en logisch systeem.
  • Geometria euklidesowa – klasyczna odmiana geometrii opisana po raz pierwszy przez Euklidesa w dziele Elementy (z IV w. p.n.e.). Zebrał on całą ówczesną wiedzę matematyczną znaną Grekom, dziś jego dzieło przedstawia się jako pierwszą znaną aksjomatyzację w historii matematyki. Pierwotnie uprawiano ją jedynie na płaszczyźnie i w przestrzeni trójwymiarowej wiążąc ją jednocześnie ze światem fizycznym, który miała opisywać, nie dopuszczając tym samym możliwości badania innych odmian geometrii.
rdfs:seeAlso
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3235 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software