# ## About: Dunkl operatorGotoSpongeNotDistinctPermalink

An Entity of Type : yago:WikicatLieGroups, within Data Space : dbpedia.org associated with source document(s)

In mathematics, particularly the study of Lie groups, a Dunkl operator is a certain kind of mathematical operator, involving differential operators but also reflections in an underlying space. Formally, let G be a Coxeter group with reduced root system R and kv a multiplicity function on R (so ku = kv whenever the reflections σu and σv corresponding to the roots u and v are conjugate in G). Then, the Dunkl operator is defined by: where is the i-th component of v, 1 ≤ i ≤ N, x in RN, and f a smooth function on RN.

AttributesValues
rdf:type
rdfs:label
• Dunkl operator
rdfs:comment
• In mathematics, particularly the study of Lie groups, a Dunkl operator is a certain kind of mathematical operator, involving differential operators but also reflections in an underlying space. Formally, let G be a Coxeter group with reduced root system R and kv a multiplicity function on R (so ku = kv whenever the reflections σu and σv corresponding to the roots u and v are conjugate in G). Then, the Dunkl operator is defined by: where is the i-th component of v, 1 ≤ i ≤ N, x in RN, and f a smooth function on RN.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
• In mathematics, particularly the study of Lie groups, a Dunkl operator is a certain kind of mathematical operator, involving differential operators but also reflections in an underlying space. Formally, let G be a Coxeter group with reduced root system R and kv a multiplicity function on R (so ku = kv whenever the reflections σu and σv corresponding to the roots u and v are conjugate in G). Then, the Dunkl operator is defined by: where is the i-th component of v, 1 ≤ i ≤ N, x in RN, and f a smooth function on RN. Dunkl operators were introduced by Charles Dunkl (). One of Dunkl's major results was that Dunkl operators "commute," that is, they satisfy just as partial derivatives do. Thus Dunkl operators represent a meaningful generalization of partial derivatives.
authorlink
• Charles F. Dunkl
first
• Charles
last
• Dunkl
year
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019   OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software