## About: De Moivre's formulaGotoSponge NotDistinct Permalink

An Entity of Type : yago:WikicatMathematicalTheorems, within Data Space : dbpedia.org associated with source document(s)

In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity), named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) x and integer n it holds that where i is the imaginary unit (i2 = −1). While the formula was named after de Moivre, he never stated it in his works. The expression cos(x) + i sin(x) is sometimes abbreviated to cis(x).

AttributesValues
rdf:type
rdfs:label
• De Moivre's formula
rdfs:comment
• In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity), named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) x and integer n it holds that where i is the imaginary unit (i2 = −1). While the formula was named after de Moivre, he never stated it in his works. The expression cos(x) + i sin(x) is sometimes abbreviated to cis(x).
rdfs:seeAlso
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
• In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity), named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) x and integer n it holds that where i is the imaginary unit (i2 = −1). While the formula was named after de Moivre, he never stated it in his works. The expression cos(x) + i sin(x) is sometimes abbreviated to cis(x). The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos(nx) and sin(nx) in terms of cos(x) and sin(x). As written, the formula is not valid for non-integer powers n. However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the nth roots of unity, that is, complex numbers z such that zn = 1.
Faceted Search & Find service v1.17_git39 as of Aug 09 2019

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.