About: Data mining     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Disease, within Data Space : dbpedia.org associated with source document(s)

Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD.

AttributesValues
rdf:type
rdfs:label
  • Data mining
  • تنقيب في البيانات
  • Data-Mining
  • Minería de datos
  • Exploration de données
  • Data mining
  • データマイニング
  • Datamining
  • Eksploracja danych
  • Mineração de dados
  • Data mining
  • 数据挖掘
rdfs:comment
  • Il data mining è l'insieme di tecniche e metodologie che hanno per oggetto l'estrazione di un sapere o di una conoscenza a partire da grandi quantità di dati (attraverso metodi automatici o semi-automatici) e l'utilizzo scientifico, industriale o operativo di questo sapere.
  • データマイニング(英語: Data mining)とは、統計学、パターン認識、人工知能等のデータ解析の技法を大量のデータに網羅的に適用することで知識を取り出す技術のことである。DMと略して呼ばれる事もある。通常のデータの扱い方からは想像が及びにくい、ヒューリスティク(heuristic、発見的)な知識獲得が可能であるという期待を含意していることが多い。とくにテキストを対象とするものをテキストマイニング、そのなかでもウェブページを対象にしたものをウェブマイニングと呼ぶ。英語では"Data mining"の語の直接の起源となった研究分野であるknowledge-discovery in databases(データベースからの知識発見)の頭文字をとってKDDとも呼ばれる。
  • Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD.
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) التنقيب في البيانات(بالانجليزية: data mining) هي عملية بحث محوسب ويدوي عن معرفة من البيانات دون فرضيات مسبقة عما يمكن أن تكون هذه المعرفة.كما ويعرف التنقيب في البيانات على أنه عملية تحليل كمية بيانات (عادة ما تكون كمية كبيرة) لإيجاد علاقة منطقية تلخص البيانات بطريقة جديدة تكون مفهومة ومفيدة لصاحب البيانات. يطلق اسم "نماذج" models على العلاقات والبيانات الملخصة التي يتم الحصول عليها من التنقيب في البيانات. يتعامل تنقيب البيانات عادة مع بيانات يكون قد تم الحصول عليها بغرض غير غرض التنقيب في البيانات (مثلاً قاعدة بيانات التعاملات في مصرف ما) مما يعني أن طريقة التنقيب في البيانات لاتؤثر مطلقاً على طريقة تجميع البيانات ذاتها. هذه هي أحد النواحي التي يختلف فيها التنق
  • Unter Data-Mining [ˈdeɪtə ˈmaɪnɪŋ] (englisch für Daten-Bergbau, eine Metapher für einen scheinbar wertlosen Datenberg, in dem aufwändig nach neuem Wissen „gegraben“ werden soll) versteht man die systematische Anwendung statistischer Methoden auf große Datenbestände (insbesondere "Big Data" bzw. Massendaten) mit dem Ziel, neue Querverbindungen und Trends zu erkennen. Solche Datenbestände können aufgrund ihrer Größe nicht manuell verarbeitet werden, sodass man computergestützte Methoden benötigt. Die Methoden können aber auch auf kleinere Datenmengen angewendet werden. In der Praxis wurde der Unterbegriff Data-Mining auf den gesamten Prozess der sogenannten „Knowledge Discovery in Databases“ (Wissensentdeckung in Datenbanken; KDD) übertragen, der auch Schritte wie die Vorverarbeitung beinhal
  • La minería de datos o exploración de datos (es la etapa de análisis de "Knowledge Discovery in Databases" o KDD) es un campo de la estadística y las ciencias de la computación referido al proceso que intenta descubrir patrones en grandes volúmenes de conjuntos de datos. Utiliza los métodos de la inteligencia artificial, aprendizaje automático, estadística y sistemas de bases de datos. El objetivo general del proceso de minería de datos consiste en extraer información de un conjunto de datos y transformarla en una estructura comprensible para su uso posterior. Además de la etapa de análisis en bruto, que involucra aspectos de bases de datos y de gestión de datos, de procesamiento de datos, del modelo y de las consideraciones de inferencia, de métricas de Intereses, de consideraciones de la
  • L’exploration de données, connue aussi sous l'expression de fouille de données, forage de données, prospection de données, data mining, ou encore extraction de connaissances à partir de données, a pour objet l’extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données, par des méthodes automatiques ou semi-automatiques.
  • Datamining is het gericht zoeken naar (statistische) verbanden in gegevensverzamelingen met als doel profielen op te stellen voor wetenschappelijk, journalistiek of commercieel gebruik. Zo'n verzameling gegevens kan gevormd worden door gebeurtenissen in een praktijksituatie te registreren (aankoopgedrag van consumenten, symptomen bij patiënten, et cetera) of door de resultaten van eerder uitgevoerde wetenschappelijke onderzoeken met elkaar te vergelijken en te herinterpreteren.
  • Eksploracja danych (spotyka się również określenie drążenie danych, pozyskiwanie wiedzy, wydobywanie danych, ekstrakcja danych) (ang. data mining) - jeden z etapów procesu odkrywania wiedzy z baz danych (ang. Knowledge Discovery in Databases, KDD). Idea eksploracji danych polega na wykorzystaniu szybkości komputera do znajdowania ukrytych dla człowieka (właśnie z uwagi na ograniczone możliwości czasowe) prawidłowości w danych zgromadzonych w hurtowniach danych.
  • Prospecção de dados (português europeu) ou mineração de dados (português brasileiro) (também conhecida pelo termo inglês data mining) é o processo de explorar grandes quantidades de dados à procura de padrões consistentes, como regras de associação ou sequências temporais, para detectar relacionamentos sistemáticos entre variáveis, detectando assim novos subconjuntos de dados. Esse é um tópico recente em ciência da computação, mas utiliza várias técnicas da estatística, recuperação de informação, inteligência artificial e reconhecimento de padrões.
  • Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) — собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Термин введён Григорием Пятецким-Шапиро в 1989 году.
  • 数据挖掘(Data mining)是一个跨学科的计算机科学分支。 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。 除了原始分析步骤,它还涉及到数据库和数据管理方面、数据预处理、模型与推断方面考量、兴趣度度量、复杂度的考虑,以及发现结构、可视化及在线更新等后处理。 数据挖掘是“資料庫知識發現”(KDD)的分析步骤。 这个术语其实是误称,因为目标是从大量数据中提取模式和知识,而不是(挖掘)数据本身。它也是一个流行语而且经常用于大规模数据或信息处理(数据采集、数据提取、数据存储、数据分析和数据统计),还有决策支持系统方面的应用(包括人工智能、机器学习和商业智能)。《数据挖掘:实用机器学习技术及Java实现》一书大部分是机器学习的内容。这本书最初只叫做“实用机器学习”,“数据挖掘”一词是后来为了营销才加入的。通常情况下,使用更为正式的术语,(大规模)数据分析和分析学,或者指出实际的研究方法(例如人工智能和机器学习)会更准确一些。 类似词语“数据捕捞”、“数据捕鱼”和“数据探测”指用数据挖掘方法来采样(可能)过小以致无法可靠地统计推断出所发现任何模式的有效性的更大总体数据集的部分。不过这些方法可以建立新的假设来检验更大数据总体。
differentFrom
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3235 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software