About: Cyclic group     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPropertiesOfGroups, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCyclic_group

In algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it consists of a set of elements with a single invertible associative operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation or its inverse to g. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.

AttributesValues
rdf:type
rdfs:label
  • Cyclic group
  • زمرة دائرية
  • Zyklische Gruppe
  • Grupo cíclico
  • Groupe cyclique
  • Gruppo ciclico
  • 巡回群
  • Cyclische groep
  • Grupa cykliczna
  • Grupo cíclico
  • Циклическая группа
  • 循環群
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) ملف:Disambigua compass.svg ميز عن زمرة الدائرة. في نظرية الزمر، يُقال عن زمرة أنها دائرية (بالإنجليزية: Cyclic group) إذا كان من الممكن توليدها عن طريق عنصر وحيد، فإذا كانت الزمرة تحوي عنصراً a (ويسمى مولد الزمرة) وكانت العملية المعرفة عليها هي الجداء، فإن أي عنصر من هذه الزمرة يمكن كتابته قوةً للعنصر a، أما إذا كانت العملية المعرفة هي الجمع فإن جميع العناصر يجب أن تكون من مضاعفات العنصر a.
  • In matematica, più precisamente nella teoria dei gruppi, un gruppo ciclico è un gruppo che può essere generato da un unico elemento. Un tale gruppo è isomorfo al gruppo delle classi di resto modulo , oppure al gruppo dei numeri interi. Quindi i gruppi ciclici sono fra i più semplici, e sono completamente classificati.
  • In de groepentheorie, een deelgebied van de wiskunde, is een cyclische groep een groep die kan worden voortgebracht door één enkel element, in de zin dat de groep een element g (genoemd een "voortbrenger") heeft, zodanig dat, wanneer multiplicatief geschreven, elk element van de groep een macht van g is (wanneer de notatie additief is, een veelvoud van g).
  • 群論における巡回群(じゅんかいぐん、英: cyclic group)とは、ただ一つの元で生成することができる群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。
  • Um grupo diz-se cíclico se for gerado por um único elemento.
  • Циклическая группа — группа , которая может быть порождена одним элементом a, то есть все её элементы являются степенями a (или, если использовать аддитивную терминологию, представимы в виде na, где n — целое число). Математическое обозначение: . Несмотря на своё название, группа не обязательно должна буквально представлять собой «цикл». Может случиться так, что все степени будут различными. Порождённая таким образом группа называется бесконечной циклической группой и изоморфна группе целых чисел по сложению
  • 在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。
  • In algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it consists of a set of elements with a single invertible associative operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation or its inverse to g. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.
  • In der Gruppentheorie ist eine zyklische Gruppe eine Gruppe, die von einem einzelnen Element erzeugt wird. Sie besteht nur aus Potenzen des Erzeugers : Eine Gruppe ist also zyklisch, wenn sie ein Element enthält, sodass jedes Element von eine Potenz von ist. Gleichbedeutend damit ist, dass es ein Element gibt, sodass selbst die einzige Untergruppe von ist, die enthält. In diesem Fall wird ein erzeugendes Element oder kurz ein Erzeuger von genannt. Zyklische Gruppen sind die einfachsten Gruppen und können vollständig klassifiziert werden: Für jede natürliche Zahl mit genau
  • En teoría de grupos, un grupo cíclico es un grupo que puede ser generado por un solo elemento; es decir, hay un elemento a del grupo G (llamado "generador" de G), tal que todo elemento de G puede ser expresado como una potencia de a. Si la operación del grupo se denota aditivamente, se dirá que todo elemento de G se puede expresar como na, para n entero.
  • En mathématiques et plus précisément en théorie des groupes, un groupe cyclique, ou ce qui est équivalent, un groupe monogène, est un groupe dans lequel il existe un élément a tel que tout élément du groupe puisse (en notation additive) s'exprimer sous forme d'un multiple de a ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, qu'un seul groupe cyclique infini : le groupe additif ℤ des entiers relatifs et, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient ℤ/nℤ — également noté ℤn ou Cn — de ℤ par le sous-groupe des multiples de n.
  • Grupa cykliczna – grupa generowana przez jeden element nazywany jej generatorem (grupa może mieć więcej niż jeden generator). Dowolny element tej grupy można uzyskać przez iterowanie (wielokrotne złożenie) działania grupowego na generatorze lub jego odwrotności; w notacji multiplikatywnej elementy są więc potęgami generatora, a w notacji addytywnej jego wielokrotnościami. W szczególności dowolną grupę cykliczną można przedstawić jako gdzie jest generatorem grupy W szczególności może się zdarzyć, iż będzie dla pewnego równe elementowi neutralnemu (lub grupa diedralna o tej samej strukturze) rzędu dla
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software