About: Convex set     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Settlement, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FConvex_set

In Euclidean space, a convex set is the region such that, for every pair of points within the region, every point on the straight line segment that joins the pair of points is also within the region. For example, a solid cube is a convex set, but anything that is hollow or has a dent in it, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all convex sets containing a given subset A of Euclidean space is called the convex hull of A. It is the smallest convex set containing A.

AttributesValues
rdf:type
rdfs:label
  • Convex set
  • مجموعة محدبة
  • Konvexe Menge
  • Convexidad
  • Ensemble convexe
  • Insieme convesso
  • 凸集合
  • Convexe verzameling
  • Zbiór wypukły
  • Conjunto convexo
  • Выпуклое множество
  • 凸集
rdfs:comment
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) في الفضاء الإقليدي، يكون جسم ما محدبا إذا كانت القطعة المستقيمة الواصلة بين كل نقطتين من الجسم تقع بكاملها ضمن حدود الجسم. على سبيل المثال، يعتبر المكعب محدباً، بينما شكل الهلال غير محدب.
  • In der Mathematik heißt eine geometrische Figur oder allgemeiner eine Teilmenge eines euklidischen Raums konvex, wenn für je zwei beliebige Punkte, die zur Menge gehören, auch stets deren Verbindungsstrecke ganz in der Menge liegt. Dies garantiert, dass die Menge an keiner Stelle eine (konkave) Einbuchtung hat.
  • Un objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points A et B, le segment [A, B] qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas.
  • ユークリッド空間における物体が凸(とつ、英: convex)であるとは、その物体に含まれる任意の二点に対し、それら二点を結ぶ線分上の任意の点がまたその物体に含まれることを言う。例えば中身のつまった立方体は凸であるが、例えば三日月形のように窪みや凹みのあるものは何れも凸でない。凸曲線は凸集合の境界を成す。 凸集合の概念は後で述べるとおり他の空間へも一般化することができる。
  • In de euclidische ruimte is een object convex als voor ieder tweetal punten binnen dit object, het rechte lijnstuk dat deze twee punten verbindt, geheel binnen het object ligt. Een massieve kubus is bijvoorbeeld convex, maar alles wat hol van binnen is of waar een deuk in zit, bijvoorbeeld een vorm als de wassende maan, is niet convex.
  • Um subconjunto X de um espaço vetorial real ou complexo é convexo quando todo segmento de reta ligando dois pontos de X está contido em X. Ou seja: Se X não é convexo, diz-se côncavo. O menor convexo que contém um subconjunto X designa-se por invólucro convexo de X.
  • Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
  • 在点集拓扑学與欧几里得空间中,凸集(convex set)是一個點集合,其中每兩點之間的直线點都落在該點集合中。
  • In Euclidean space, a convex set is the region such that, for every pair of points within the region, every point on the straight line segment that joins the pair of points is also within the region. For example, a solid cube is a convex set, but anything that is hollow or has a dent in it, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all convex sets containing a given subset A of Euclidean space is called the convex hull of A. It is the smallest convex set containing A.
  • La convexidad (del latín convexĭtas, -ātis) de una curva o una superficie, es la zona que se asemeja al exterior de una circunferencia o una superficie esférica, es decir, que tiene su parte sobresaliente dirigida al observador. Es el concepto opuesto a la 'concavidad'. Una parte C de un espacio vectorial real es convexa si para cada par de puntos de C, el segmento que los une está totalmente incluido en C; es decir, un conjunto es convexo si se puede ir de cualquier punto a cualquier otro en línea recta, sin salir del mismo. Definición formal: C es convexo si y solo si para todo : Es decir, : y es ,
  • In uno spazio euclideo un insieme convesso è un insieme nel quale, per ogni coppia di punti, il segmento che li congiunge è interamente contenuto nell'insieme. Esempi di insiemi convessi sono cerchi, sfere, cubi, piani, semipiani, trapezi, mentre non lo sono archi di circonferenze, tori o qualunque insieme che contenga buchi o incavature o che non sia connesso. In tre dimensioni, esempi di insiemi convessi sono la sfera, il cubo, il paraboloide, mentre esempi di insiemi non convessi sono il toro, l'iperboloide iperbolato. In termini più intuitivi una figura convessa è una figura "che esubera", mentre una figura concava è una figura "che rientra". In insiemistica non si adopera la definizione di insieme concavo, bensì la nozione più articolata di spazio connesso.
  • Zbiór wypukły – podzbiór pewnej przestrzeni zawierający wraz dowolnymi dwoma jego punktami odcinek je łączący. Przestrzeń może być np. euklidesowa, afiniczna lub liniowa (tj. wektorowa); we wszystkich przypadkach wymaga się, by ciało skalarów było uporządkowane, zwykle jest to ciało liczb rzeczywistych. Formalna definicja Zbiór przestrzeni liniowej nad ciałem uporządkowanym nazywa się wypukłym, jeżeli Spotyka się również równoważne warianty tej definicji, np.: W przestrzeni afinicznej ostatni warunek ma postać
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software