About: Conic section   Goto Sponge  NotDistinct  Permalink

An Entity of Type : dbo:Album, within Data Space : dbpedia.org associated with source document(s)

In mathematics, a conic section (or simply conic) is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse. The circle is a special case of the ellipse, and is of sufficient interest in its own right that it was sometimes called a fourth type of conic section. The conic sections have been studied by the ancient Greek mathematicians with this work culminating around 200 BC, when Apollonius of Perga undertook a systematic study of their properties.

AttributesValues
rdf:type
rdfs:label
  • قطع مخروطي
  • Kegelschnitt
  • Sección cónica
  • Conique
  • Sezione conica
  • 円錐曲線
  • Kegelsnede
  • Krzywa stożkowa
  • Cónica
  • Коническое сечение
  • Conic section
  • 圆锥曲线
rdfs:comment
  • في الهندسة الوصفية القطع المخروطي منحنى ناتج من عند تقاطع مخروط بسطح لا يمر برأس وغير مماس له (التقاطع في هذه الحالات نقطة أو مستقيم). دُرست القطع المخروطية منذ وقت طويل يعود إلى 200 قبل الميلاد عندما قام أبولونيو (ِApollonius من Perga) بإجراء دراسة تبين خصائصها.
  • Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos: elipse, parábola, hipérbola y circunferencia.
  • In matematica, e in particolare in geometria analitica e in geometria proiettiva, con sezione conica, o semplicemente conica, si intende genericamente una curva piana che sia luogo dei punti ottenibili intersecando la superficie di un cono circolare con un piano. Le sezioni coniche sono state studiate accuratamente in epoca ellenistica, in particolare da Menecmo ed Apollonio di Perga intorno al 200 a.C.; questi diede anche i nomi tuttora in uso per i tre tipi fondamentali di sezioni coniche: ellisse (la circonferenza ne è un caso degenere), parabola e iperbole.
  • 円錐曲線(えんすいきょくせん、conic curve, conic section; 円錐断面)とは、円錐面を任意の平面で切断したときの断面としてえられる曲線群の総称である。
  • Krzywa stożkowa – zbiór punktów przecięcia płaszczyzny i powierzchni stożkowej, której kierującą jest okrąg. Krzywe stożkowe są krzywymi drugiego stopnia, tzn. można je w kartezjańskim układzie współrzędnych opisać równaniem algebraicznym drugiego stopnia względem obu zmiennych i . Stożkowe są niezmiennikami przekształcenia rzutowego i stąd grają pewną rolę w geometrii rzutowej. Typ stożkowej może się przy tym zmieniać, stożkowe można w tym sensie uznać za rzuty okręgu na płaszczyznę.
  • 圆锥曲线(英語:conic section),又稱圓錐截痕、圓錐截面、二次平面曲线,是数学、幾何學中通过平切圆锥(嚴格為一个正圆锥面和一个平面完整相切)得到的曲线,包括圆,椭圆,抛物线,双曲线及一些退化类型。 圆锥曲线在約公元前200年時就已被命名和研究了,其發現者為古希臘的數學家阿波羅尼奥斯,那时阿波羅尼阿斯对它们的性质已做了系统性的研究。 圆锥曲线应用最广泛的定义为(椭圆,抛物线,双曲线的统一定义):动点到一定点(焦点)的距离与其到一定直线(准线)的距离之比为常数(離心率e)的点的集合是圆锥曲线。对于0 < e < 1得到椭圆,对于e = 1得到抛物线,对于e > 1得到双曲线。
  • Ein Kegelschnitt (lateinisch sectio conica, englisch conic section) ist eine Kurve, die entsteht, wenn man die Oberfläche eines Doppelkegels mit einer Ebene schneidet. Enthält die Schnittebene die Kegelspitze, so entsteht als Schnitt entweder ein Punkt oder eine Gerade oder ein sich schneidendes Geradenpaar. Ist die Spitze nicht enthalten, so entsteht eine Ellipse, eine Parabel oder eine Hyperbel. Ein Kegelschnitt kann auch als zweidimensionaler Sonderfall einer Quadrik angesehen werden und durch eine Gleichung 2. Grades, die allgemeine Kegelschnittgleichung, beschrieben werden.
  • En mathématiques, et plus précisément en géométrie, les coniques constituent une famille très utilisée de courbes planes algébriques. Elles tirent leur nom du fait qu'elles ont d'abord été définies comme l'intersection d'un cône de révolution avec un plan. Parmi les coniques non dégénérées, on compte la parabole, l'ellipse et l'hyperbole. Les coniques peuvent être définies de plusieurs façons différentes globalement semblables pour les courbes de base : comme intersection de cône, par foyer, directrice, et excentricité ou par une propriété bifocale.
  • Een kegelsnede is een vlakke kromme die ontstaat door het snijden van een kegel (eigenlijk een dubbele kegel) met een plat vlak. Kegelsneden werden reeds 200 jaar v.Chr. bestudeerd door Apollonius van Perga. Afhankelijk van de manier waarop de kegel wordt gesneden, ontstaan verschillende meetkundige krommes: een cirkel, een ellips, een parabool of een hyperbool. Een cirkel is een speciaal geval van een ellips, een parabool is op te vatten als een grensgeval tussen een ellips en een hyperbool.
  • Em geometria, cónicas (português europeu) ou cônicas (português brasileiro) são as curvas geradas ou encontradas, na intersecção de um plano que atravessa um cone. Numa superfície afunilada, existem três tipos de cortes que podem ser obtidos por esse processo e que resultam na: Elipse * Parábola * Hipérbole
  • In mathematics, a conic section (or simply conic) is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse. The circle is a special case of the ellipse, and is of sufficient interest in its own right that it was sometimes called a fourth type of conic section. The conic sections have been studied by the ancient Greek mathematicians with this work culminating around 200 BC, when Apollonius of Perga undertook a systematic study of their properties.
  • Кони́ческое сече́ние, или ко́ника — пересечение плоскости с круговым конусом. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Конические сечения могут быть получены как пересечение плоскости с двусторонним конусом (в декартовой системе координат) Здесь — угол между образующей конуса и его осью. Если плоскость проходит через начало координат, то получается вырожденное сечение.В невырожденном случае,
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of Dec 18 2018, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software