About: Composition (combinatorics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FComposition_%28combinatorics%29

In mathematics, a composition of an integer n is a way of writing n as the sum of a sequence of (strictly) positive integers. Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same partition of that number. Every integer has finitely many distinct compositions. Negative numbers do not have any compositions, but 0 has one composition, the empty sequence. Each positive integer n has 2n−1 distinct compositions.

AttributesValues
rdfs:label
  • Composition (combinatorics)
  • Composition (combinatoire)
  • Композиция числа
rdfs:comment
  • В теории чисел композицией, или разложением, натурального числа называется его представление в виде упорядоченной суммы натуральных слагаемых. Слагаемые, входящие в композицию, называют частями, а их количество — длиной композиции. В отличие от композиции, разбиение числа не учитывает порядок следования частей. Поэтому число разбиений числа никогда не превосходит числа композиций. При фиксированной длине композиций в них иногда также допускают нулевые части.
  • In mathematics, a composition of an integer n is a way of writing n as the sum of a sequence of (strictly) positive integers. Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same partition of that number. Every integer has finitely many distinct compositions. Negative numbers do not have any compositions, but 0 has one composition, the empty sequence. Each positive integer n has 2n−1 distinct compositions.
  • En mathématiques, et notamment en combinatoire, une composition d'un entier positif n est une représentation de n comme somme d'une suite d'entiers positifs. Ainsi, (1,2,1) est une composition de 4=1+2+1. Deux suites qui diffèrent par l'ordre de leurs parts sont considérées comme des compositions différentes. Ainsi, (2,1,1) est une autre composition de l'entier 4. Les compositions diffèrent donc des partitions d'entiers qui considèrent des suites sans tenir compte de l'ordre de leurs termes.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
  • In mathematics, a composition of an integer n is a way of writing n as the sum of a sequence of (strictly) positive integers. Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same partition of that number. Every integer has finitely many distinct compositions. Negative numbers do not have any compositions, but 0 has one composition, the empty sequence. Each positive integer n has 2n−1 distinct compositions. A weak composition of an integer n is similar to a composition of n, but allowing terms of the sequence to be zero: it is a way of writing n as the sum of a sequence of non-negative integers. As a consequence every positive integer admits infinitely many weak compositions (if their length is not bounded). Adding a number of terms 0 to the end of a weak composition is usually not considered to define a different weak composition; in other words, weak compositions are assumed to be implicitly extended indefinitely by terms 0. To further generalize, an A-restricted composition of an integer n, for a subset A of the (nonnegative or positive) integers, is an ordered collection of one or more elements in A whose sum is n.
  • En mathématiques, et notamment en combinatoire, une composition d'un entier positif n est une représentation de n comme somme d'une suite d'entiers positifs. Ainsi, (1,2,1) est une composition de 4=1+2+1. Deux suites qui diffèrent par l'ordre de leurs parts sont considérées comme des compositions différentes. Ainsi, (2,1,1) est une autre composition de l'entier 4. Les compositions diffèrent donc des partitions d'entiers qui considèrent des suites sans tenir compte de l'ordre de leurs termes. La propriété principale est que le nombre de compositions d'un entier n est 2n-1, et donc que les compositions sont en bijection avec les parties d'un ensemble à n-1 éléments.
  • В теории чисел композицией, или разложением, натурального числа называется его представление в виде упорядоченной суммы натуральных слагаемых. Слагаемые, входящие в композицию, называют частями, а их количество — длиной композиции. В отличие от композиции, разбиение числа не учитывает порядок следования частей. Поэтому число разбиений числа никогда не превосходит числа композиций. При фиксированной длине композиций в них иногда также допускают нулевые части.
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software