An Entity of Type : yago:WikicatLogarithms, within Data Space : dbpedia.org associated with source document(s)

In complex analysis, a complex logarithm function is an "inverse" of the complex exponential function, just as the real natural logarithm ln x is the inverse of the real exponential function ex. Thus, a logarithm of a complex number z is a complex number w such that ew = z. The notation for such a w is ln z or log z. Since every nonzero complex number z has infinitely many logarithms, care is required to give such notation an unambiguous meaning. If z = reiθ with r > 0 (polar form), then w = ln r + iθ is one logarithm of z; adding integer multiples of 2πi gives all the others.

AttributesValues
rdf:type
rdfs:label
• Complex logarithm
rdfs:comment
• In complex analysis, a complex logarithm function is an "inverse" of the complex exponential function, just as the real natural logarithm ln x is the inverse of the real exponential function ex. Thus, a logarithm of a complex number z is a complex number w such that ew = z. The notation for such a w is ln z or log z. Since every nonzero complex number z has infinitely many logarithms, care is required to give such notation an unambiguous meaning. If z = reiθ with r > 0 (polar form), then w = ln r + iθ is one logarithm of z; adding integer multiples of 2πi gives all the others.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
Faceted Search & Find service v1.17_git39 as of Aug 09 2019

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)