About: Compact-open topology     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945 .

AttributesValues
rdfs:label
  • Compact-open topology
  • Kompakt-Offen-Topologie
  • Topologie compacte-ouverte
  • コンパクト開位相
  • Topologia compacto-aberto
  • Компактно-открытая топология
  • 紧致开拓扑
rdfs:comment
  • In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945 .
  • En mathématiques, la topologie compacte-ouverte est une topologie définie sur l'ensemble des applications continues entre deux espaces topologiques. C'est l'une des topologies les plus utilisées sur un tel espace fonctionnel, et elle est employée en théorie de l'homotopie et en analyse fonctionnelle. Elle a été introduite par Ralph Fox (en) en 1945.
  • コンパクト開位相(コンパクトかいいそう、英: compact-open topology)とは連続写像のなす空間上の位相構造の一つで、定義域のコンパクト部分集合を値域の開集合内に移す写像全体が開集合となる最弱の位相の事である。特に定義域が局所コンパクトハウスドルフである場合は連続写像空間上のきわめて自然な位相概念となり、コンパクト開位相は が連続となる最弱な位相と一致する。また値域が距離空間(あるいはより一般に一様空間)であれば、コンパクト開位相で収束する必要十分条件は、定義域の各コンパクト部分集合上で一様収束する事(これを広義一様収束あるいはコンパクト収束という)である。
  • Em topologia, a topologia compacto-aberto é uma topologia definida num espaço de funções.
  • Компактно-открытая топология — естественная топология на пространстве — пространстве непрерывных отображений между двумя топологическими пространствами , предбазу которой образуют множества отображений вида где — открытое множество, а — компактное множество.
  • 在数学中,紧致开拓扑是定义在两个拓扑空间之间的所有连续映射的集合上的一种拓扑。紧致开拓扑是函数空间上的常用拓扑之一,在同伦理论和泛函分析中有应用。
  • Die Kompakt-Offene-Topologie kurz KO-Topologie ist eine im mathematischen Teilgebiet der Topologie betrachtete Struktur auf Funktionenräumen stetiger Funktionen. Sind nämlich und topologische Räume, so sind die stetigen Abbildungen die strukturerhaltenden Abbildungen. Daher liegt es nahe, die Menge aller stetigen Funktionen wieder mit einer Topologie auszustatten. Unter den vielen Möglichkeiten, das zu tun, hat sich die Kompakt-Offen-Topologie als besonders geeignet herausgestellt.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945 .
  • Die Kompakt-Offene-Topologie kurz KO-Topologie ist eine im mathematischen Teilgebiet der Topologie betrachtete Struktur auf Funktionenräumen stetiger Funktionen. Sind nämlich und topologische Räume, so sind die stetigen Abbildungen die strukturerhaltenden Abbildungen. Daher liegt es nahe, die Menge aller stetigen Funktionen wieder mit einer Topologie auszustatten. Unter den vielen Möglichkeiten, das zu tun, hat sich die Kompakt-Offen-Topologie als besonders geeignet herausgestellt. Die Mathematiker R. H. Fox (1945) und Richard Friederich Arens (1946) definierten als erste diese Topologie und untersuchten sie systematisch.
  • En mathématiques, la topologie compacte-ouverte est une topologie définie sur l'ensemble des applications continues entre deux espaces topologiques. C'est l'une des topologies les plus utilisées sur un tel espace fonctionnel, et elle est employée en théorie de l'homotopie et en analyse fonctionnelle. Elle a été introduite par Ralph Fox (en) en 1945.
  • コンパクト開位相(コンパクトかいいそう、英: compact-open topology)とは連続写像のなす空間上の位相構造の一つで、定義域のコンパクト部分集合を値域の開集合内に移す写像全体が開集合となる最弱の位相の事である。特に定義域が局所コンパクトハウスドルフである場合は連続写像空間上のきわめて自然な位相概念となり、コンパクト開位相は が連続となる最弱な位相と一致する。また値域が距離空間(あるいはより一般に一様空間)であれば、コンパクト開位相で収束する必要十分条件は、定義域の各コンパクト部分集合上で一様収束する事(これを広義一様収束あるいはコンパクト収束という)である。
  • Em topologia, a topologia compacto-aberto é uma topologia definida num espaço de funções.
  • Компактно-открытая топология — естественная топология на пространстве — пространстве непрерывных отображений между двумя топологическими пространствами , предбазу которой образуют множества отображений вида где — открытое множество, а — компактное множество.
  • 在数学中,紧致开拓扑是定义在两个拓扑空间之间的所有连续映射的集合上的一种拓扑。紧致开拓扑是函数空间上的常用拓扑之一,在同伦理论和泛函分析中有应用。
id
title
  • Compact-open topology
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software