About: Clifford–Klein form     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatLieGroups, within Data Space : dbpedia.org associated with source document(s)

In mathematics, a Clifford–Klein form is a double coset space Γ\G/H, where G is a reductive Lie group, H a closed subgroup of G, and Γ a discrete subgroup of G that acts properly discontinuously on the homogeneous space G/H. A suitable discrete subgroup Γ may or may not exist, for a given G and H. If Γ exists, there is the question of whether Γ\G/H can be taken to be a compact space, called a compact Clifford–Klein form. When H is itself compact, classical results show that a compact Clifford–Klein form exists. Otherwise it may not, and there are a number of negative results.

AttributesValues
rdf:type
rdfs:label
  • Clifford–Klein form
rdfs:comment
  • In mathematics, a Clifford–Klein form is a double coset space Γ\G/H, where G is a reductive Lie group, H a closed subgroup of G, and Γ a discrete subgroup of G that acts properly discontinuously on the homogeneous space G/H. A suitable discrete subgroup Γ may or may not exist, for a given G and H. If Γ exists, there is the question of whether Γ\G/H can be taken to be a compact space, called a compact Clifford–Klein form. When H is itself compact, classical results show that a compact Clifford–Klein form exists. Otherwise it may not, and there are a number of negative results.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In mathematics, a Clifford–Klein form is a double coset space Γ\G/H, where G is a reductive Lie group, H a closed subgroup of G, and Γ a discrete subgroup of G that acts properly discontinuously on the homogeneous space G/H. A suitable discrete subgroup Γ may or may not exist, for a given G and H. If Γ exists, there is the question of whether Γ\G/H can be taken to be a compact space, called a compact Clifford–Klein form. When H is itself compact, classical results show that a compact Clifford–Klein form exists. Otherwise it may not, and there are a number of negative results.
http://purl.org/voc/vrank#hasRank
http://purl.org/li...ics/gold/hypernym
is sameAs of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
is known for of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software