About: Clenshaw–Curtis quadrature     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FClenshaw%E2%80%93Curtis_quadrature

Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables Briefly, the function to be integrated is evaluated at the extrema or roots of a Chebyshev polynomial and these values are used to construct a polynomial approximation for the function. This polynomial is then integrated exactly. In practice, the integration weights for the value of the function at each node are precomputed, and this computation can be performed in

AttributesValues
rdfs:label
  • Clenshaw–Curtis quadrature
rdfs:comment
  • Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables Briefly, the function to be integrated is evaluated at the extrema or roots of a Chebyshev polynomial and these values are used to construct a polynomial approximation for the function. This polynomial is then integrated exactly. In practice, the integration weights for the value of the function at each node are precomputed, and this computation can be performed in
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables and use a discrete cosine transform (DCT) approximation for the cosine series. Besides having fast-converging accuracy comparable to Gaussian quadrature rules, Clenshaw–Curtis quadrature naturally leads to nested quadrature rules (where different accuracy orders share points), which is important for both adaptive quadrature and multidimensional quadrature (cubature). Briefly, the function to be integrated is evaluated at the extrema or roots of a Chebyshev polynomial and these values are used to construct a polynomial approximation for the function. This polynomial is then integrated exactly. In practice, the integration weights for the value of the function at each node are precomputed, and this computation can be performed in time by means of fast Fourier transform-related algorithms for the DCT.
http://purl.org/voc/vrank#hasRank
is sameAs of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software