About: Classical group   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:WikicatLieGroups, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Cl

AttributesValues
rdf:type
rdfs:label
  • Groupe classique
  • Classical group
  • Klassieke groep
  • 典型群
rdfs:comment
  • In de groepentheorie, een deelgebied van de wiskunde, zijn de klassieke Lie-groepen vier oneindige families van Lie-groepen die nauw verwant zijn met de symmetrieën van Euclidische ruimten. Er is een zekere speelruimte in het gebruik van de term klassieke groep. Deze hangt af van de context. De term lijkt te zijn bedacht door Hermann Weyl (zoals in de titel van zijn monografie uit 1940). Het weerspiegelt waarschijnlijk hun relatie tot de "klassieke" meetkunde, in de geest van Felix Klein zijn Erlanger Programm.
  • 在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。 有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。 和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。
  • In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Cl
  • En mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques. Dans ce qui suit, les corps ne sont pas supposés être commutatifs.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • En mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques. À tout groupe classique, on peut associer une ou plusieurs géométrie dite classique, dans l'esprit du programme d'Erlangen de Felix Klein. Réciproquement, les groupes associés aux géométries classiques sont des groupes classiques (ou liés à ceux-ci). Sans contexte ou qualificatif, l'expression groupe classique est ambigüe. Dans certains contextes, on peut lever l'ambiguïté : il y a les groupes de Lie simples classiques et les groupes algébriques simples classiques, ainsi que les groupes finis simples classiques. L'expression groupe classique aurait été créée par Hermann Weyl, et c'est lui qui l'a popularisée dans son traité The Classical Groups. Dans ce qui suit, les corps ne sont pas supposés être commutatifs. Dans ce qui suit, tous les espaces vectoriels sont supposés être de dimension finie non nulle.
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software