About: Bijection     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:MathematicalRelation113783581, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FBijection

In mathematics, a bijection, bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. The term one-to-one correspondence must not be confused with one-to-one function (a.k.a. injective function) (see figures).

AttributesValues
rdf:type
rdfs:label
  • تقابل (دالة)
  • Funció bijectiva
  • Bijekce
  • Bijektive Funktion
  • Bijection
  • Dissurĵeto
  • Función biyectiva
  • Bijekzio
  • Bijection
  • Corrispondenza biunivoca
  • 全単射
  • 전단사 함수
  • Bijectie
  • Funkcja wzajemnie jednoznaczna
  • Função bijectiva
  • Биекция
  • Bijektiv funktion
  • Бієкція
  • 双射
rdfs:comment
  • الدالة التقابلية (بالإنجليزية: Bijective Function) هي دالة رياضية من مجموعة X إلى مجموعة Y لها خاصية انه : لكل عنصر y من المجموعة المستقر Y ،هناك مقابل واحد فقط x من المجموعة المنطلق X بحيث يكون : f(x) = y أي ان y هي صورة x حسب الدالة f.
  • Bijekce (bijektivní zobrazení, vzájemně jednoznačné zobrazení, isomorfismus) je zobrazení, které je zároveň prosté i na. Bijekce je tedy zároveň injektivní zobrazení a surjektivní zobrazení. Bijektivní zobrazení přiřazuje každému prvku z cílové množiny právě jeden prvek ze startovní množiny.
  • Matematika funkcio nomiĝas dissurĵeto (aŭ bijekcio, aŭ inversigebla funkcio), se ĝi estas disĵeto kaj surĵeto.
  • Matematikan, bijekzioa edo funtzio bijektiboa funtzio bat da, aldi berean injektiboa eta supraiektiboa dena; hau da, X multzoko elementu bakoitzari Y multzoko elementu bat dagokio, eta Y multzoko edozein y elementuri y = f(x) funtzioa beteko duen X multzoko x elementu bakarra dagokio. Formalki, Aurrekoaren ondorio zuzena hau da: funtzio bijektibo batean abiaburu-multzoko edo Definizio-eremuaren kardinalitatea, eta helburu-multzoarena edo irudi-multzoarena, berbera da. Hori adibidean ikus daiteke, non |X|=|Y|=4 den.
  • In matematica una corrispondenza biunivoca tra due insiemi e è una relazione binaria tra e , tale che ad ogni elemento di corrisponda uno ed un solo elemento di , e viceversa ad ogni elemento di corrisponda uno ed un solo elemento di . In particolare, la corrispondenza biunivoca è una relazione di equivalenza. Lo stesso concetto può anche essere espresso usando le funzioni. Si dice che una funzione è biiettiva se per ogni elemento di vi è uno e un solo elemento di tale che . Una tale funzione è detta anche biiezione, bigezione, funzione bigettiva o funzione biunivoca.
  • 数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が挙げられる。 全単射であることを一対一上への写像[上への1対1写像] (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。
  • 수학에서, 전단사 함수(全單射函數, 영어: bijection, bijective function)는 두 집합 사이를 중복 없이 모두 일대일로 대응시키는 함수이다. 일대일 대응이라고도 한다.
  • Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i „na”. Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.
  • Uma função bijetiva, função bijetora, correspondência biunívoca ou bijeção, é uma função injectiva e sobrejectiva (injetora e sobrejetora). Os termos injectiva, sobrejectiva e bijectiva se popularizaram devido ao seu uso por Nicolas Bourbaki.
  • En bijektiv funktion är en funktion, som är injektiv och surjektiv. En alternativ definition av bijektiv funktion kan uttryckas som: En bijektiv funktion är en funktion f, från mängden X till mängden Y, som är omvändbar och sådan att f:s definitionsmängd Df = X och f:s värdemängd Vf = Y. * En injektiv och surjektiv funktion och därmed en bijektiv funktion * En injektiv men ej surjektiv funktion och därmed ej en bijektiv funktion * En surjektiv men ej injektiv funktion och därmed ej en bijektiv funktion
  • 數學中,一個由集合映射至集合的函數,若對每一在內的,存在唯一一個在內的与其对应,則此函數為對射函數。 換句話說,是雙射的,如果其為兩集合間的一一對應。即,同時為單射和滿射。 例如,由整數集合至的函數,其將每一個整數連結至整數,這是一個雙射函數;再看一個例子,函數,其將每一對實數連結至,這也是個雙射函數。 一雙射函數亦簡稱為雙射(英語:bijection)或置換。後者一般較常使用在時。以由至的所有雙射組成的集合標記為。 雙射函數在許多數學領域扮演著很基本的角色,如在同構的定義(以及如同胚和等相關概念)、置換群、投影映射及許多其他概念的基本上。
  • En matemàtiques, una funció o aplicació bijectiva també anomenada simplement una bijecció és una funció f d'un conjunt X a un conjunt Y (f:X → Y) amb la propietat que per a cada y de Y hi ha exactament un x de X tal que f(x) = y. Les funcions bijectives juguen un paper fonamental en moltes àrees de les matemàtiques, per exemple en la definició d'isomorfismes (i conceptes relacionats com els homeomorfismes i els difeomorfismes), grup de permutacions, , i molts altres.
  • Bijektivität (zum Adjektiv bijektiv, welches etwa ‚umkehrbar eindeutig auf‘ bedeutet – daher auch der Begriff eineindeutig bzw. substantivisch entsprechend Eineindeutigkeit) ist ein mathematischer Begriff aus dem Bereich der Mengenlehre. Er bezeichnet eine spezielle Eigenschaft von Abbildungen und Funktionen. Bijektive Abbildungen und Funktionen nennt man auch Bijektionen. Zu einer mathematischen Struktur auftretende Bijektionen haben oft eigene Namen wie Isomorphismus, Diffeomorphismus, Homöomorphismus, Spiegelung oder Ähnliches. Hier sind dann in der Regel noch zusätzliche Forderungen in Hinblick auf die Erhaltung der jeweils betrachteten Struktur zu erfüllen.
  • In mathematics, a bijection, bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. The term one-to-one correspondence must not be confused with one-to-one function (a.k.a. injective function) (see figures).
  • En matemáticas, una función es biyectiva si es al mismo tiempo inyectiva y sobreyectiva; es decir, si todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada, y a cada elemento del conjunto de llegada le corresponde un elemento del conjunto de salida. Formalmente, dada una función : La función es biyectiva si se cumple la siguiente condición: Es decir, para todo de se cumple que existe un único de , tal que la función evaluada en es igual a .
  • En mathématiques, une bijection est une application bijective. Une application est bijective si et seulement si tout élément de son ensemble d'arrivée a un et un seul antécédent, c'est-à-dire est image d'exactement un élément (de son domaine de définition), ou encore si elle est injective et surjective. Les bijections sont aussi parfois appelées correspondances biunivoques. On peut remarquer que dans cette définition, on n'impose pas de condition aux éléments de l'ensemble de départ, autre que celle qui définit une application : tout élément a une image et une seule.
  • In de wiskunde is een bijectie of bijectieve afbeelding een afbeelding die zowel injectief als surjectief is, en dus alle elementen van twee verzamelingen in een-op-eencorrespondentie aan elkaar koppelt. Bijectief wil dus zeggen (zie plaatje rechts) dat elk element uit de verzameling gekoppeld is aan precies één element uit de verzameling en dat omgekeerd ook elk element van de verzameling gekoppeld is aan precies één element uit de verzameling . Een bijectieve functie van een verzameling op zichzelf wordt wel een permutatie genoemd.
  • Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют также взаимно однозначным отображением (соответствием), одно-однозначным отображением или изоморфным соответствием. Взаимно однозначное отображение конечного множества на себя называется перестановкой (или подстановкой) элементов этого множества. Примеры: и
  • Бієкція (бієктивна функція, бієктивне відображення, взаємно однозначна відповідність) — в математиці відображення, яке є одночасно сюр'єктивним та ін'єктивним. Інтуїтивно можна визначити бієкцію як відповідність, яка асоціює один елемент вхідної множини з одним і тільки одним елементом результуючої множини і навпаки, одному елементу результуючої множини зіставляється один і лише один елемент вхідної множини. Тобто, відображення f: X→Y є бієктивним, коли кожному елементу y з множини Y зіставлений один і лише один елемент x з множини X, і f(x) = y.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software