An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In the mathematical field of combinatorics, a bent function is a special type of Boolean function. This means it takes several inputs and gives one output, each of which has two possible values (such as 0 and 1, or true and false). The name is figurative. Bent functions are so called because they are as different as possible from all linear and affine functions, the simplest or "straight" functions. This makes the bent functions naturally hard to approximate. Bent functions were defined and named in the 1960s by Oscar Rothaus in research not published until 1976. They have been extensively studied for their applications in cryptography, but have also been applied to spread spectrum, coding theory, and combinatorial design. The definition can be extended in several ways, leading to differen

AttributesValues
rdfs:label
• Bent function
rdfs:comment
• In the mathematical field of combinatorics, a bent function is a special type of Boolean function. This means it takes several inputs and gives one output, each of which has two possible values (such as 0 and 1, or true and false). The name is figurative. Bent functions are so called because they are as different as possible from all linear and affine functions, the simplest or "straight" functions. This makes the bent functions naturally hard to approximate. Bent functions were defined and named in the 1960s by Oscar Rothaus in research not published until 1976. They have been extensively studied for their applications in cryptography, but have also been applied to spread spectrum, coding theory, and combinatorial design. The definition can be extended in several ways, leading to differen
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:depiction
foaf:isPrimaryTopicOf
thumbnail
prov:wasDerivedFrom
has abstract
• In the mathematical field of combinatorics, a bent function is a special type of Boolean function. This means it takes several inputs and gives one output, each of which has two possible values (such as 0 and 1, or true and false). The name is figurative. Bent functions are so called because they are as different as possible from all linear and affine functions, the simplest or "straight" functions. This makes the bent functions naturally hard to approximate. Bent functions were defined and named in the 1960s by Oscar Rothaus in research not published until 1976. They have been extensively studied for their applications in cryptography, but have also been applied to spread spectrum, coding theory, and combinatorial design. The definition can be extended in several ways, leading to different classes of generalized bent functions that share many of the useful properties of the original.
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 07.20.3230 as of May 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)