About: Antisymmetric tensor   Goto Sponge  NotDistinct  Permalink

An Entity of Type : yago:Variable105857459, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FAntisymmetric_tensor

In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant. For example, holds when the tensor is antisymmetric on it first three indices.

AttributesValues
rdf:type
rdfs:label
  • Antisymmetric tensor
  • Tenseur antisymétrique
  • 反対称テンソル
  • Antisymmetrische tensor
  • Антисимметричный тензор
  • Tensor antissimétrico
rdfs:comment
  • In wiskunde en theoretische natuurkunde, bedoelt men met antisymmetrische tensor een tensor waarvan het teken omdraait onder een permutatie van twee indices. Een tensor van orde r is dus antisymmetrisch indien voor elke j en k.
  • В математике и теоретической физике тензор называется антисимметричным по двум индексам i и j, если он меняет знак при перестановке этих индексов: Если тензор меняет знак при перестановке любой пары индексов то такой тензор называется абсолютно антисимметричным тензором. Для любого тензора U, с компонентами , можно построить симметричный и антисимметричный тензор по правилу: (симметричная часть), (антисимметричная часть), сходно для других индексов. Под термином «часть» подразумевается, что
  • In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant. For example, holds when the tensor is antisymmetric on it first three indices.
  • En mathématiques et physique théorique, un tenseur est antisymétrique pour les indices i et j si son signe est interchangé lorsqu'on inverse 2 indices : Un tenseur antisymétrique est un tenseur possédant 2 indices pour lesquels il est antisymétrique. Si un tenseur change de signe dès que 2 indices quelconques sont inversés, alors ce tenseur est dit complètement antisymétrique et est aussi nommé forme différentielle. Un tenseur A qui est antisymétrique pour les indices i et j possède la propriété que sa contraction avec un tenseur B, symétrique pour les indices i et j, est identiquement nulle.
  • 数学および理論物理学において、テンソルが添字の対に関して反対称 (anti­symmetric) もしくは歪対称 (skew-symmertic) であるとは、それら添字の入れ替えに関して符号が反転することを言う。また、交代的 (alternating) であるとは、それらを等しいと置いたとき零になることを言う。係数体の標数が 2 でないときこれら二つの概念は一致する(多重線型写像の項も参照)。 * 反対称: T…i…j… = −T…j…i… * 交代: ik = ij ⇒ T…ik…ij… = 0 もう少し一般に、添字集合の部分集合 J に関して反対称(resp. 交代的)とは、J の任意の二元に関して反対称(resp. 交代的)となるときに言う。添字については、一般に共変添字 (covariant) も反変添字 (contra­variant) も考えるものとする。例えば最初の三文字に関して反対称なテンソルとは を満足するものである。
  • Em matemática e física teórica, um tensor é antissimétrico em dois índices I e j se ele muda de sinal quando os dois índices são trocados: Um tensor antissimétrico é um tensor para o qual existem dois índices, nos qual ele é antissimétrico. Se um tensor muda de sinal sob a troca de quaisquer pares de índices, então o tensor é totalmente antissimétrico e ele também é conhecido como uma forma diferencial. Um tensor A que é antissimétrico nos índices I e j tem a propriedade de que a contração com um tensor B, que é simétrico nos índices I e j, é identicamente nulo. (parte simétrica) .
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant. For example, holds when the tensor is antisymmetric on it first three indices. If a tensor changes sign under exchange of any pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor of order p may be referred to as a p-form, and a completely antisymmetric contravariant tensor may be referred to as a p-vector.
  • En mathématiques et physique théorique, un tenseur est antisymétrique pour les indices i et j si son signe est interchangé lorsqu'on inverse 2 indices : Un tenseur antisymétrique est un tenseur possédant 2 indices pour lesquels il est antisymétrique. Si un tenseur change de signe dès que 2 indices quelconques sont inversés, alors ce tenseur est dit complètement antisymétrique et est aussi nommé forme différentielle. Un tenseur A qui est antisymétrique pour les indices i et j possède la propriété que sa contraction avec un tenseur B, symétrique pour les indices i et j, est identiquement nulle. Pour un tenseur quelconque U avec comme composants avec une paire d'indice i et j, U possède une partie symétrique et antisymétrique définies par : (partie symétrique) (partie antisymétrique) Des conditions similaires peuvent être données pour d'autres paires d'indices. Le terme « partie » suggère qu'un tenseur est la somme de ses parties symétrique et antisymétrique pour une paire d'indices donnée, comme dans Un tenseur antisymétrique particulièrement important est physique est le tenseur de Faraday F en électromagnétisme.
  • 数学および理論物理学において、テンソルが添字の対に関して反対称 (anti­symmetric) もしくは歪対称 (skew-symmertic) であるとは、それら添字の入れ替えに関して符号が反転することを言う。また、交代的 (alternating) であるとは、それらを等しいと置いたとき零になることを言う。係数体の標数が 2 でないときこれら二つの概念は一致する(多重線型写像の項も参照)。 * 反対称: T…i…j… = −T…j…i… * 交代: ik = ij ⇒ T…ik…ij… = 0 もう少し一般に、添字集合の部分集合 J に関して反対称(resp. 交代的)とは、J の任意の二元に関して反対称(resp. 交代的)となるときに言う。添字については、一般に共変添字 (covariant) も反変添字 (contra­variant) も考えるものとする。例えば最初の三文字に関して反対称なテンソルとは を満足するものである。 任意の添字の対の入れ替えに関して符号を反転するテンソルは完全反対称 (completely anti­symmetric)(もしくは全反対称 (totally anti­symmetric))あるいは単に反対称テンソル(はんたいしょうテンソル、英: anti­symmetric tensor)と言う。同様に任意の添え字の対に関して交代的なテンソルを交代テンソル(こうたいテンソル、英: alternating tensor)という。p-次の完全反対称(あるいは交代)共変テンソルは p-形式、完全反対称(あるいは交代)反変テンソルは p-ベクトルと呼ばれる。
  • In wiskunde en theoretische natuurkunde, bedoelt men met antisymmetrische tensor een tensor waarvan het teken omdraait onder een permutatie van twee indices. Een tensor van orde r is dus antisymmetrisch indien voor elke j en k.
  • В математике и теоретической физике тензор называется антисимметричным по двум индексам i и j, если он меняет знак при перестановке этих индексов: Если тензор меняет знак при перестановке любой пары индексов то такой тензор называется абсолютно антисимметричным тензором. Для любого тензора U, с компонентами , можно построить симметричный и антисимметричный тензор по правилу: (симметричная часть), (антисимметричная часть), сходно для других индексов. Под термином «часть» подразумевается, что
  • Em matemática e física teórica, um tensor é antissimétrico em dois índices I e j se ele muda de sinal quando os dois índices são trocados: Um tensor antissimétrico é um tensor para o qual existem dois índices, nos qual ele é antissimétrico. Se um tensor muda de sinal sob a troca de quaisquer pares de índices, então o tensor é totalmente antissimétrico e ele também é conhecido como uma forma diferencial. Um tensor A que é antissimétrico nos índices I e j tem a propriedade de que a contração com um tensor B, que é simétrico nos índices I e j, é identicamente nulo. Para um tensor geral U com componentes e um par de índices I e j, U tem partes simétrica e antissimétrica definidas como: (parte simétrica) (parte antissimétrica) Definições semelhantes podem ser dadas para outros pares de índices. Como sugere o termo "parte", um tensor é a soma das suas partes simétrica e antissimétrica para um determinado par de índices, como em . Um tensor antissimétrico importante em física é o tensor electromagnético F em eletromagnetismo.
http://purl.org/voc/vrank#hasRank
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git21 as of Mar 09 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3230 as of Apr 1 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software