About: Affine space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAlgebraicStructures, within Data Space : dbpedia.org associated with source document(s)

In mathematics, an affine space is a geometric structure that generalizes the properties of Euclidean spaces that are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. A Euclidean space is an affine space over the reals, equipped with a metric, the Euclidean distance. Therefore, in Euclidean geometry, an affine property is a property that may be proved in affine spaces.

AttributesValues
rdf:type
rdfs:label
  • Affine space
  • فضاء تآلفي
  • Affiner Raum
  • Espacio afín
  • Espace affine
  • Spazio affine
  • アフィン空間
  • Affiene ruimte
  • Przestrzeń afiniczna
  • Espaço afim
  • Аффинное пространство
  • 仿射空间
rdfs:comment
  • في الرياضيات ، الفضاء التآلفي (أو الفضاء الأفيني (بالإنجليزية: Affine space)) هو بنية رياضية مجردة تعمم الخواص الهندسية الأفينية للفضاء الإقليدي . في فضاء أفيني، يمكن للمرء أن يطرح نقاطاً ليحصل على متجه، أو يجمع متجه مع نقطة ليحصل على نقطة أخرى، لكن لا يمكن جمع نقطتين لعدم وجود نقطة المبدأ. الفضاء الأفيني الوحيد البعد يدعى الخط الأفيني. الفضاء الفيزيائي فهو ليس فقط فضاءً أفينياً بل هو بنية مترية أيضاً وبشكل خاص بنية تشكيلية conformal structure.
  • Nell'approccio algebrico, lo spazio affine è una struttura matematica strettamente collegata a quella di spazio vettoriale. Intuitivamente, uno spazio affine si ottiene da uno spazio vettoriale facendo in modo che tra i suoi punti non ve ne sia uno, l'origine, "centrale" e "privilegiato" rispetto agli altri. Lo spazio affine tridimensionale è lo strumento naturale per modellizzare lo spazio della fisica classica, le cui leggi sono infatti indipendenti dalla scelta di un sistema di riferimento. Come gli spazi vettoriali, gli spazi affini vengono studiati con gli strumenti dell'algebra lineare.
  • 数学において、アフィン空間(あふぃんくうかん、英語: affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。
  • In de meetkunde, een deelgebied van de wiskunde, is een affiene ruimte een meetkundige wiskundige structuur, die de affiene eigenschappen van de Euclidische ruimte veralgemeent. Informeel kan men zich een affiene ruimte voorstellen als een vectorruimte, maar dan zonder punt dat als oorsprong fungeert. In een affiene ruimte kan men punten van elkaar aftrekken om zo vectoren te krijgen, of kan men een vector optellen bij een punt om zo een ander punt te verkrijgen, maar men kan geen punten bij elkaar optellen.
  • Аффи́нное простра́нство — пространство, обобщающее аффинные свойства евклидова пространства. Во многом схоже с векторным пространством; однако для аффинного пространства, в отличие от векторного, характерно то, что все точки являются равноправными (в частности, в нём не определено понятие нулевой точки, или начала отсчёта).
  • 仿射空间,又称线性流形,是数学中的几何结构,这种结构是欧式空间的仿射特性的推广。在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。
  • In mathematics, an affine space is a geometric structure that generalizes the properties of Euclidean spaces that are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. A Euclidean space is an affine space over the reals, equipped with a metric, the Euclidean distance. Therefore, in Euclidean geometry, an affine property is a property that may be proved in affine spaces.
  • Der affine Raum, gelegentlich auch lineare Mannigfaltigkeit genannt, nimmt im systematischen Aufbau der Geometrie eine Mittelstellung zwischen Euklidischem Raum und Projektivem Raum ein. Der affine Raum im engsten Sinne ist ein mathematisches Modell für den uns vertrauten dreidimensionalen Anschauungsraum. Verschiedene mathematische Disziplinen haben unterschiedliche Präzisierungen dieses Begriffs gefunden.
  • En géométrie, la notion d'espace affine généralise la notion d'espace issue de la géométrie euclidienne en omettant les notions d'angle et de distance. Dans un espace affine, on peut parler d'alignement, de parallélisme, de . Sous la forme qui utilise des rapports de mesures algébriques, qui est une notion affine, le théorème de Thalès et le théorème de Ceva sont des exemples de théorèmes de géométrie affine plane réelle (c'est-à-dire n'utilisant que la structure d'espace affine du plan réel). Un espace affine peut aussi être vu comme un espace vectoriel « dont on a oublié l'origine ». Ainsi les translations de vecteur non nul sont des transformations affines (c'est-à-dire qu'elles conservent la structure d'espace affine), mais pas vectorielles. Les homothéties (de centre un point quelconq
  • Przestrzeń afiniczna – abstrakcyjna struktura uogólniająca te własności przestrzeni euklidesowych, które są niezależne od pojęć odległości i kąta. W przestrzeniach afinicznych można odejmować punkty by wyznaczyć wektory, oraz przesuwać punkt o wektor, tzn. dodawać wektory do punktu. W szczególności nie ma wyróżnionego punktu, który mógłby służyć za początek. Jednowymiarowa przestrzeń afiniczna nazywana jest prostą afiniczną, a dwuwymiarowa – płaszczyzną afiniczną. Przestrzeń afiniczna wyposażona dodatkowo w metrykę staje się przestrzenią euklidesową.
  • Em geometria, espaço afim é o espaço estudado pela geometria afim. É uma estrutura geométrica que generaliza as propriedades da geometria afim de um espaço euclidiano. Pode ser pensado informalmente como um espaço vetorial onde se esqueceu que ponto é a origem. Em um espaço afim, pode-se subtrair pontos para obter vetores, ou adicionar um vetor para um ponto para obter um outro ponto, mas não pode-se adicionar pontos. Em particular, não há como distinguir que ponto serve como origem. Sendo dado um espaço vetorial de dimensao finita n sobre um corpo um conjunto dotado de uma aplicação * (A1) . .
differentFrom
rdfs:seeAlso
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3235 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software